HERG K+ channel activity is regulated by changes in phosphatidyl inositol 4,5-bisphosphate

被引:111
作者
Bian, JS
Cui, J
McDonald, TV
机构
[1] Yeshiva Univ Albert Einstein Coll Med, Dept Med, Bronx, NY 10461 USA
[2] Yeshiva Univ Albert Einstein Coll Med, Dept Mol Pharmacol, Bronx, NY 10461 USA
关键词
HERG; potassium channel; phospholipids; G-protein-coupled receptor;
D O I
10.1161/hh2401.101375
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Autonomic stimulation controls heart rate and myocardial excitability and may underlie the precipitation of both acquired and hereditary arrhythmias. Changes in phosphatidyl inositol bisphosphate (PIP2) concentration results from activation of several muscarinic and adrenergic receptors. We sought to investigate whether PIP-2 changes could alter HERG K+ channel activity in a manner similar to that seen with inward rectifier channels. PIP2 (10 mu mol/L) internally dialyzed increased the K+ current amplitude and shifted the voltage-dependence of activation in a hyperpolarizing direction. Elevated PIP2 accelerated activation and slowed inactivation kinetics. When 10 mu mol/L PIP2 was applied to excised patches. no significant change in single channel conductance occurred, indicating that PIP2-dependent effects were primarily due to altered channel gating. PIP2 significantly attenuated the run-down of HERG channel activity that we normally observe after patch excision, suggesting that channel run-down is due, in part, to membrane depletion of PIP2. Inclusion of a neutralizing anti-PIP2 monoclonal antibody in whole cell pipette solution produced the opposite effects of PIP2. The physiological relevance of PIP2-HERG interactions is supported by our finding that phenylephrine reduced the K+ current density in cells coexpressing alpha 1A-receptor and HERG. The effects, of a-adrenergic stimulation, however, were prevented by excess PIP2 in internal solutions but not by internal Ca2+ buffering nor PKC inhibition, suggesting that the mechanism is due to G-protein-coupled receptor stimulation of PLC resulting in the consumption of endogenous PIP2. Thus, dynamic regulation of HERG K+ channels may be achieved via receptor-mediated changes in PIP2 concentrations.
引用
收藏
页码:1168 / 1176
页数:9
相关论文
共 32 条
[1]   PIP2 and PIP as determinants for ATP inhibition of KATP channels [J].
Baukrowitz, T ;
Schulte, U ;
Oliver, D ;
Herlitze, S ;
Krauter, T ;
Tucker, SJ ;
Ruppersberg, JP ;
Fakler, B .
SCIENCE, 1998, 282 (5391) :1141-1144
[2]   RUN-DOWN OF THE CA CURRENT DURING LONG WHOLE-CELL RECORDINGS IN GUINEA-PIG HEART-CELLS - ROLE OF PHOSPHORYLATION AND INTRACELLULAR CALCIUM [J].
BELLES, B ;
MALECOT, CO ;
HESCHELER, J ;
TRAUTWEIN, W .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1988, 411 (04) :353-360
[3]   Characterisation of sulphonylurea and ATP-regulated K+ channels in rat pancreatic A-cells [J].
Bokvist, K ;
Olsen, HL ;
Hoy, M ;
Gotfredsen, CF ;
Holmes, WF ;
Buschard, K ;
Rorsman, P ;
Gromada, J .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1999, 438 (04) :428-436
[4]   Complete reversal of run down in rabbit cardiac Ca2+ channels by patch-cramming in Xenopus oocytes;: partial reversal by protein kinase A [J].
Costantin, JL ;
Qin, N ;
Waxham, MN ;
Birnbaumer, L ;
Stefani, E .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1999, 437 (06) :888-894
[5]   Analysis of the cyclic nucleotide binding domain of the HERG potassium channel and interactions with KCNE2 [J].
Cui, J ;
Kagan, A ;
Qin, DM ;
Mathew, J ;
Melman, YF ;
McDonald, TV .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (20) :17244-17251
[6]   Cyclic AMP regulates the HERG K+ channel by dual pathways [J].
Cui, J ;
Melman, Y ;
Palma, E ;
Fishman, GI ;
McDonald, TV .
CURRENT BIOLOGY, 2000, 10 (11) :671-674
[7]   K(IR)2.1 INWARD RECTIFIER K+ CHANNELS ARE REGULATED INDEPENDENTLY BY PROTEIN-KINASES AND ATP HYDROLYSIS [J].
FAKLER, B ;
BRANDLE, U ;
GLOWATZKI, E ;
ZENNER, HP ;
RUPPERSBERG, JP .
NEURON, 1994, 13 (06) :1413-1420
[8]   Anionic phospholipids activate ATP-sensitive potassium channels [J].
Fan, Z ;
Makielski, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (09) :5388-5395
[9]   The structure of divalent cation-induced aggregates of PIP2 and their alteration by gelsolin and tau [J].
Flanagan, LA ;
Cunningham, CC ;
Chen, J ;
Prestwich, GD ;
Kosik, KS ;
Janmey, PA .
BIOPHYSICAL JOURNAL, 1997, 73 (03) :1440-1447
[10]   Regulation of cardiac Na+,Ca2+ exchange and K-ATP potassium channels by PIP2 [J].
Hilgemann, DW ;
Ball, R .
SCIENCE, 1996, 273 (5277) :956-959