Using symbolic data in neuro-fuzzy classification

被引:9
作者
Nauck, D [1 ]
机构
[1] Univ Magdeburg, Fac Comp Sci, IWS, FIN, D-39106 Magdeburg, Germany
来源
18TH INTERNATIONAL CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS | 1999年
关键词
D O I
10.1109/NAFIPS.1999.781751
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In real world data sets we often have to deal with different kinds of variables. The data can be for example categorical or metric. Data mining methods can often deal with only one kind of data. Even when fuzzy systems are applied - which are not dependent on the scales of variables - usually only metric data is considered. In this paper we propose a learning algorithm that creates mixed fuzzy rules - fuzzy rules that use categorical and metric variables.
引用
收藏
页码:536 / 540
页数:5
相关论文
共 18 条
  • [1] Bezdek JC., 1992, FUZZY MODELS PATTERN
  • [2] FAYYAD MU, 1996, ADV KNOWLEDGE DISCOV
  • [3] Heinsohn, 1991, UNCERTAINTY VAGUENES, DOI 10.1007/978-3-642-76702-9
  • [4] HOPPNER F, 1999, IN PRESS FUZZY CLUST
  • [5] NEFCLASS-X - a soft computing tool to build readable fuzzy classifiers
    Nauck, D
    Kruse, R
    [J]. BT TECHNOLOGY JOURNAL, 1998, 16 (03) : 180 - 190
  • [6] A neuro-fuzzy method to learn fuzzy classification rules from data
    Nauck, D
    Kruse, R
    [J]. FUZZY SETS AND SYSTEMS, 1997, 89 (03) : 277 - 288
  • [7] NAUCK D, 1999, P 6 INT WORKSH FUZZ
  • [8] NAUCK D, 1999, IN PRESS ARTIFICIAL
  • [9] NAUCK D, 1998, HDB FUZZY SETS, pCH5
  • [10] NAUCK D, 1998, HDB FUZZY COMPUTATIO, pCHD2