The dissociation kinetics of protonated leucine enkephalin and its proton and alkali metal bound dimers were investigated by blackbody infrared radiative dissociation in a Fourier-transform mass spectrometer. From the temperature dependence of the unimolecular dissociation rate constants, Arrhenius activation parameters in the zero-pressure limit are obtained. Protonated leucine enkephalin dissociates to form b(4) and (M-H2O)(+) ions with an average activation energy (E-a) of 1.1 eV and an A factor of 10(10.5) s(-1). The value of the A factor indicates s that these dissociation processes are rearrangements. The b(4) ions subsequently dissociate to form a(4) ions via a process with a relatively high activation energy (1.3 eV), but one that is entropically favored. For the cationized dimers, the thermal stability decreases with increasing cation size, consistent with a simple electrostatic interaction in these noncovalent ion-molecule complexes. The E-a and A factors are indistinguishable within experimental error with values of similar to 1.5 eV and 10(17) s(-1), respectively. Although not conclusive, results from master equation modeling indicate that all these BIRD processes, except for b(4) --> a(4), are in the rapid energy exchange limit. In this limit, the internal energy of the precursor ion population is given by a Boltzmann distribution and information about the energetics and dynamics of the reaction are obtained directly from the measured Arrhenius parameters. (C) 1997 American Society for Mass Spectrometry.