On the nonlinearity of spatial scales in extreme weather attribution statements

被引:24
作者
Angelil, Oliver [1 ,2 ]
Stone, Daithi [3 ]
Perkins-Kirkpatrick, Sarah [1 ,2 ]
Alexander, Lisa V. [1 ,2 ]
Wehner, Michael [3 ]
Shiogama, Hideo [4 ]
Wolski, Piotr [5 ]
Ciavarella, Andrew [6 ]
Christidis, Nikolaos [6 ]
机构
[1] UNSW Australia, Climate Change Res Ctr, Sydney, NSW 2052, Australia
[2] UNSW Australia, ARC Ctr Excellence Climate Syst Sci, Sydney, NSW 2052, Australia
[3] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[4] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan
[5] Univ Cape Town, Climate Syst Anal Grp, Environm & Geog Sci, Rondebosch, South Africa
[6] Met Off Hadley Ctr, Exeter EX1 3PB, Devon, England
基金
新加坡国家研究基金会;
关键词
Attribution; Extremes; C20C+; AGCMs; FUTURE CHANGES; CLIMATE; PRECIPITATION; TEMPERATURE;
D O I
10.1007/s00382-017-3768-9
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In the context of ongoing climate change, extreme weather events are drawing increasing attention from the public and news media. A question often asked is how the likelihood of extremes might have changed by anthropogenic greenhouse-gas emissions. Answers to the question are strongly influenced by the model used, duration, spatial extent, and geographic location of the event-some of these factors often overlooked. Using output from four global climate models, we provide attribution statements characterised by a change in probability of occurrence due to anthropogenic greenhouse-gas emissions, for rainfall and temperature extremes occurring at seven discretised spatial scales and three temporal scales. An understanding of the sensitivity of attribution statements to a range of spatial and temporal scales of extremes allows for the scaling of attribution statements, rendering them relevant to other extremes having similar but non-identical characteristics. This is a procedure simple enough to approximate timely estimates of the anthropogenic contribution to the event probability. Furthermore, since real extremes do not have well-defined physical borders, scaling can help quantify uncertainty around attribution results due to uncertainty around the event definition. Results suggest that the sensitivity of attribution statements to spatial scale is similar across models and that the sensitivity of attribution statements to the model used is often greater than the sensitivity to a doubling or halving of the spatial scale of the event. The use of a range of spatial scales allows us to identify a nonlinear relationship between the spatial scale of the event studied and the attribution statement.
引用
收藏
页码:2739 / 2752
页数:14
相关论文
共 34 条
[1]   Constraints on future changes in climate and the hydrologic cycle [J].
Allen, MR ;
Ingram, WJ .
NATURE, 2002, 419 (6903) :224-+
[2]   Comparing regional precipitation and temperature extremes in climate model and reanalysis products [J].
Angelil, Oliver ;
Perkins-Kirkpatrick, Sarah ;
Alexander, Lisa, V ;
Stone, Daithi ;
Donat, Markus G. ;
Wehner, Michael ;
Shiogama, Hideo ;
Ciavarella, Andrew ;
Christidis, Nikolaos .
WEATHER AND CLIMATE EXTREMES, 2016, 13 :35-43
[3]   Attributing the probability of South African weather extremes to anthropogenic greenhouse gas emissions: Spatial characteristics [J].
Angelil, Oliver ;
Stone, Daithi A. ;
Pall, Pardeep .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (09) :3238-3243
[4]   Attribution of extreme weather to anthropogenic greenhouse gas emissions: Sensitivity to spatial and temporal scales [J].
Angelil, Oliver ;
Stone, Daithi A. ;
Tadross, Mark ;
Tummon, Fiona ;
Wehner, Michael ;
Knutti, Reto .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (06) :2150-2155
[5]  
Bellprat Omar., 2016, Geophysical Research Letters
[6]   Climate modelling: Severe summertime flooding in Europe [J].
Christensen, JH ;
Christensen, OB .
NATURE, 2003, 421 (6925) :805-806
[7]   A New HadGEM3-A-Based System for Attribution of Weather- and Climate-Related Extreme Events [J].
Christidis, Nikolaos ;
Stott, Peter A. ;
Scaife, Adam A. ;
Arribas, Alberto ;
Jones, Gareth S. ;
Copsey, Dan ;
Knight, Jeff R. ;
Tennant, Warren J. .
JOURNAL OF CLIMATE, 2013, 26 (09) :2756-2783
[8]   Statistics of Extremes [J].
Davison, A. C. ;
Huser, R. .
ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 2, 2015, 2 :203-235
[9]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[10]   Was there a basis for anticipating the 2010 Russian heat wave? [J].
Dole, Randall ;
Hoerling, Martin ;
Perlwitz, Judith ;
Eischeid, Jon ;
Pegion, Philip ;
Zhang, Tao ;
Quan, Xiao-Wei ;
Xu, Taiyi ;
Murray, Donald .
GEOPHYSICAL RESEARCH LETTERS, 2011, 38