Extreme precipitation response to climate perturbations in an atmospheric mesoscale model

被引:52
作者
Attema, Jisk J. [1 ]
Loriaux, Jessica M. [1 ,2 ]
Lenderink, Geert [1 ]
机构
[1] KNMI, NL-3730 AE De Bilt, Netherlands
[2] Delft Univ Technol, NL-2600 GA Delft, Netherlands
来源
ENVIRONMENTAL RESEARCH LETTERS | 2014年 / 9卷 / 01期
关键词
precipitation; extremes; convection; climate change; non-hydrostatic; meso scale modelling; TROPICAL PRECIPITATION; TEMPERATURE; SENSITIVITY; CMIP5;
D O I
10.1088/1748-9326/9/1/014003
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Observations of extreme (sub-) hourly precipitation at mid-latitudes show a large dependency on the dew point temperature often close to 14% per degree-2 times the dependency of the specific humidity on dew point temperature which is given by the Clausius-Clapeyron (CC) relation. By simulating a selection of 11 cases over the Netherlands characterized by intense showers, we investigate this behavior in the non-hydrostatic weather prediction model Harmonie at a resolution of 2.5 km. These experiments are repeated using perturbations of the atmospheric profiles of temperature and humidity: (i) using an idealized approach with a 2 degrees warmer (colder) atmosphere assuming constant relative humidity, and (ii) using changes in temperature and humidity derived from a long climate change simulation at 2 degrees global warming. All perturbations have a difference in the local dew point temperature compared to the reference of approximately 2 degrees. Differences are considerable between the cases, with dependencies ranging from almost zero to an increase of 18% per degree rise of the dew point temperature. On average however, we find an increase of extreme precipitation intensity of 11% per degree for the idealized perturbation, and 9% per degree for the climate change perturbation. For the most extreme events these dependencies appear to approach a rate of 11-14% per degree, in closer agreement with the observed relation.
引用
收藏
页数:12
相关论文
共 35 条
[1]   Constraints on future changes in climate and the hydrologic cycle [J].
Allen, MR ;
Ingram, WJ .
NATURE, 2002, 419 (6903) :224-+
[2]   Dynamical kernel of the Aladin-NH spectral limited-area model: Revised formulation and sensitivity experiments [J].
Benard, P. ;
Vivoda, J. ;
Masek, J. ;
Smolikova, P. ;
Yessad, K. ;
Smith, Ch ;
Brozkova, R. ;
Geleyn, J. -F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (646) :155-169
[3]   Strong increase in convective precipitation in response to higher temperatures [J].
Berg, Peter ;
Moseley, Christopher ;
Haerter, Jan O. .
NATURE GEOSCIENCE, 2013, 6 (03) :181-185
[4]   Detrainment in deep convection [J].
Boing, S. J. ;
Siebesma, A. P. ;
Korpershoek, J. D. ;
Jonker, H. J. J. .
GEOPHYSICAL RESEARCH LETTERS, 2012, 39
[5]  
BUBNOVA R, 1995, MON WEATHER REV, V123, P515, DOI 10.1175/1520-0493(1995)123<0515:IOTFEE>2.0.CO
[6]  
2
[7]   On the structure of water vapour feedbacks in climate models [J].
Colman, R .
GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (21) :L211091-4
[8]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[9]  
Haerter JO, 2009, NAT GEOSCI, V2, P372, DOI 10.1038/ngeo523
[10]  
Hazeleger Lenderink G, 2008, NATURE GEOSCI, V1, P511