Super-Gaussian-Bessel beam

被引:12
作者
Jiang, ZP
机构
[1] Department of Applied Physics, Natl. Univ. of Defense Technology
关键词
D O I
10.1016/0030-4018(95)00740-7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Super-Gaussian-Bessel (SGB) beams that have the form A exp[-(r/w)(n)]J(0)(alpha r) are introduced. The numeric calculations show that there exists an optimal n that is dependent on w alpha only. The SGB beam with optimal order n is the best ''non-diffracting'' beam, its transversal intensity distribution is practically unchanged within some propagation distance. The relation of optimal n versus w alpha is obtained through numeric calculations.
引用
收藏
页码:207 / 210
页数:4
相关论文
共 8 条
[1]   DIFFRACTION-FREE BEAMS [J].
DURNIN, J ;
MICELI, JJ ;
EBERLY, JH .
PHYSICAL REVIEW LETTERS, 1987, 58 (15) :1499-1501
[2]   EXACT-SOLUTIONS FOR NONDIFFRACTING BEAMS .1. THE SCALAR THEORY [J].
DURNIN, J .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1987, 4 (04) :651-654
[3]   FLATTENED GAUSSIAN BEAMS [J].
GORI, F .
OPTICS COMMUNICATIONS, 1994, 107 (5-6) :335-341
[4]   BESSEL-GAUSS BEAMS [J].
GORI, F ;
GUATTARI, G ;
PADOVANI, C .
OPTICS COMMUNICATIONS, 1987, 64 (06) :491-495
[5]  
JIANG ZP, IN PRESS APPL OPTICS
[6]   PROPAGATION OF SUPER-GAUSSIAN BEAMS [J].
PALMA, C ;
BAGINI, V .
OPTICS COMMUNICATIONS, 1994, 111 (1-2) :6-10
[7]   PROPAGATION OF SUPER-GAUSSIAN FIELD DISTRIBUTIONS [J].
PARENT, A ;
MORIN, M ;
LAVIGNE, P .
OPTICAL AND QUANTUM ELECTRONICS, 1992, 24 (09) :S1071-S1079
[8]  
SERNA J, 1992, SPIE, V1834, P162