Quantitative Fracture Strength and Plasticity Measurements of Lithiated Silicon Nanowires by In Situ TEM Tensile Experiments

被引:112
作者
Kushima, Akihiro [2 ,3 ]
Huang, Jian Yu [1 ]
Li, Ju [2 ,3 ]
机构
[1] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA
[2] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
constitutive law; battery cyclability; bending; apparent strain vs true strain; ideal strength; CORE-SHELL NANOWIRES; HIGH-CAPACITY; LITHIUM; SIMULATIONS; ELECTRODE;
D O I
10.1021/nn3037623
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report in situ tensile strength measurement of fully lithiated Si (Li-Si alloy) nanowires inside a transmission electron microscope. A specially designed dual probe with an atomic force microscopy cantilever and a scanning tunneling microscopy electrode was used to conduct lithiation of Si nanowires and then perform in situ tension of the lithiated nanowires. The axial tensile strength decreased from the initial value of 3.6 GPa for the pristine unlithiated Si nanowires to 0.72 GPa for the lithiated Li-Si alloy. We observed large fracture strain ranging from 8% to 16% for Li-Si alloy, 70% of which remained permanent after fracture. This indicates a certain degree of tensile plasticity in the lithiated silicon before fracture, Important for constitutive modeling of the lithium-ion battery cyclability. We also compare the ab initio computed ideal strengths with our measured strengths and attribute the differences to the morphology and flaws in the lithiated nanowires.
引用
收藏
页码:9425 / 9432
页数:8
相关论文
共 33 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[3]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374
[4]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[5]   Car-Parrinello Molecular Dynamics Simulations of Tensile Tests on Si⟨001⟩ Nanowires [J].
Furmanchuk, Al'ona ;
Isayev, Olexandr ;
Dinadayalane, Tandabany C. ;
Leszczynski, Jerzy .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (25) :12283-12292
[6]   Ex-situ depth-sensing indentation measurements of electrochemically produced Si-Li alloy films [J].
Hertzberg, Benjamin ;
Benson, Jim ;
Yushin, Gleb .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (08) :818-821
[7]   Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes [J].
Hu, Liangbing ;
Wu, Hui ;
Hong, Seung Sae ;
Cui, Lifeng ;
McDonough, James R. ;
Bohy, Sy ;
Cui, Yi .
CHEMICAL COMMUNICATIONS, 2011, 47 (01) :367-369
[8]   Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes [J].
Huang, Rui ;
Fan, Xing ;
Shen, Wanci ;
Zhu, Jing .
APPLIED PHYSICS LETTERS, 2009, 95 (13)
[9]   Size and temperature effects on the fracture mechanisms of silicon nanowires: Molecular dynamics simulations [J].
Kang, Keonwook ;
Cai, Wei .
INTERNATIONAL JOURNAL OF PLASTICITY, 2010, 26 (09) :1387-1401
[10]   Nanometer to micron scale mechanics of [100] silicon nanowires using atomistic simulations at accelerated time steps [J].
Kim, Hansung ;
Tomar, Vikas .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (09) :2115-2123