Hybrid grammar-based approach to nonlinear dynamical system identification from biological time series

被引:8
作者
McKinney, BA [1 ]
Crowe, JE
Voss, HU
Crooke, PS
Barney, N
Moore, JH
机构
[1] Vanderbilt Univ, Med Ctr, Dept Pediat, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Med Ctr, Program Vaccine Sci, Nashville, TN 37232 USA
[3] Vanderbilt Univ, Dept Math, Nashville, TN 37232 USA
[4] Cornell Univ, Weill Med Coll, Citigrp Biomed Imaging Ctr, New York, NY 10021 USA
[5] Dartmouth Med Sch, Dept Genet, Computat Genet Lab, Lebanon, NH 03756 USA
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 02期
关键词
D O I
10.1103/PhysRevE.73.021912
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a grammar-based hybrid approach to reverse engineering nonlinear ordinary differential equation models from observed time series. This hybrid approach combines a genetic algorithm to search the space of model architectures with a Kalman filter to estimate the model parameters. Domain-specific knowledge is used in a context-free grammar to restrict the search space for the functional form of the target model. We find that the hybrid approach outperforms a pure evolutionary algorithm method, and we observe features in the evolution of the dynamical models that correspond with the emergence of favorable model components. We apply the hybrid method to both artificially generated time series and experimentally observed protein levels from subjects who received the smallpox vaccine. From the observed data, we infer a cytokine protein interaction network for an individual's response to the smallpox vaccine.
引用
收藏
页数:7
相关论文
共 37 条
[1]  
[Anonymous], 1974, APPL OPTIMAL ESTIMAT
[2]  
[Anonymous], WORLD PROGRAMMING LA
[3]   Transcription-based prediction of response to IFNβ using supervised computational methods [J].
Baranzini, SE ;
Mousavi, P ;
Rio, J ;
Caillier, SJ ;
Stillman, A ;
Villoslada, P ;
Wyatt, MM ;
Comabella, M ;
Greller, LD ;
Somogyi, R ;
Montalban, X ;
Oksenberg, JR .
PLOS BIOLOGY, 2005, 3 (01) :166-176
[4]  
Chau CW, 1997, INT CONF ACOUST SPEE, P1727, DOI 10.1109/ICASSP.1997.598857
[5]   A genome-wide transcriptional analysis of the mitotic cell cycle [J].
Cho, RJ ;
Campbell, MJ ;
Winzeler, EA ;
Steinmetz, L ;
Conway, A ;
Wodicka, L ;
Wolfsberg, TG ;
Gabrielian, AE ;
Landsman, D ;
Lockhart, DJ ;
Davis, RW .
MOLECULAR CELL, 1998, 2 (01) :65-73
[6]  
Dawkins R., 1976, SELFISH GENE
[7]  
de Hoon Michiel J L, 2003, Pac Symp Biocomput, P17
[8]   Modeling and simulation of genetic regulatory systems: A literature review [J].
De Jong, H .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2002, 9 (01) :67-103
[9]  
Dempsey I, 2004, LECT NOTES COMPUT SC, V3103, P447
[10]  
Evett M., 1998, Genetic Programming 1998. Proceedings of the Third Annual Conference, P66