Gold nanorods to nanochains:: Mechanistic investigations on their longitudinal assembly using α,ω-alkanedithiols and interplasmon coupling

被引:181
作者
Joseph, STS [1 ]
Ipe, BI [1 ]
Pramod, P [1 ]
Thomas, KG [1 ]
机构
[1] CSIR, Reg Res Lab, Trivandrum 695019, Kerala, India
关键词
D O I
10.1021/jp0544179
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mechanistic investigations on the end-to-end assembly of An nanorods to nanochains, in the presence of alpha,w-alkanedithiols, were reported. A decrease in the longitudinal plasmon absorption was observed along with a concomitant formation of a new red-shifted band above a critical concentration of dithiol, which is attributed to the interplasmon coupling in assembled nanorods. However, no noticeable spectral changes were observed below the critical concentration, and the TEM studies indicate that the nanorods remain isolated and randomly distributed. This step is ascribed as an incubation step wherein one of the thiol groups of alpha,w-alkanedithiol preferentially binds onto the edges of the nanorods, leaving the other thiol group free. Above the critical concentration, a chain up process proceeds through the interlocking of nanorods, initially to dimers and subsequently to oligomers, which results in longitudinal interplasmon coupling. The dimerization step follows second-order kinetics which deviates with time due to oligomerization. The rate constants for dimerization of nanorods possessing various dithiols and their energy of activation were determined. The large activation energy for the dimerization further confirms that the process is not diffusion but activation controlled.
引用
收藏
页码:150 / 157
页数:8
相关论文
共 71 条
[1]   Dispersion and stability studies of resorcinarene-encapsulated gold nanoparticles [J].
Balasubramanian, R ;
Kim, B ;
Tripp, SL ;
Wang, XJ ;
Lieberman, M ;
Wei, A .
LANGMUIR, 2002, 18 (09) :3676-3681
[2]   From monolayers to nanostructured materials: An organic chemist's view of self-assembly [J].
Bethell, D ;
Brust, M ;
Schiffrin, DJ ;
Kiely, C .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1996, 409 (1-2) :137-143
[3]   NOVEL GOLD-DITHIOL NANO-NETWORKS WITH NONMETALLIC ELECTRONIC-PROPERTIES [J].
BRUST, M ;
BETHELL, D ;
SCHIFFRIN, DJ ;
KIELY, CJ .
ADVANCED MATERIALS, 1995, 7 (09) :795-&
[4]   Chemistry and properties of nanocrystals of different shapes [J].
Burda, C ;
Chen, XB ;
Narayanan, R ;
El-Sayed, MA .
CHEMICAL REVIEWS, 2005, 105 (04) :1025-1102
[5]   An improved synthesis of high-aspect-ratio gold nanorods [J].
Busbee, BD ;
Obare, SO ;
Murphy, CJ .
ADVANCED MATERIALS, 2003, 15 (05) :414-+
[6]   AXIAL AND AZIMUTHAL ANGLE DETERMINATION WITH SURFACE-ENHANCED RAMAN-SPECTROSCOPY - THIOPHENOL ON COPPER, SILVER, AND GOLD METAL-SURFACES [J].
CARRON, KT ;
HURLEY, LG .
JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (24) :9979-9984
[7]   Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors [J].
Caswell, KK ;
Wilson, JN ;
Bunz, UHF ;
Murphy, CJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (46) :13914-13915
[8]   Oriented assembly of Au nanorods using biorecognition system [J].
Chang, JY ;
Wu, HM ;
Chen, H ;
Ling, YC ;
Tan, WH .
CHEMICAL COMMUNICATIONS, 2005, (08) :1092-1094
[9]  
Chen SW, 2000, ADV MATER, V12, P186, DOI 10.1002/(SICI)1521-4095(200002)12:3<186::AID-ADMA186>3.0.CO
[10]  
2-E