Allosteric voltage gating of potassium channels I -: mSlo ionic currents in the absence of Ca2+

被引:211
作者
Horrigan, FT
Cui, JM
Aldrich, RW [1 ]
机构
[1] Stanford Univ, Sch Med, Howard Hughes Med Inst, Dept Cellular & Mol Physiol, Stanford, CA 94305 USA
[2] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
关键词
calcium; K-Ca channel; large conductance Ca2+-activated K+ channel; ion channel gating;
D O I
10.1085/jgp.114.2.277
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Activation of large conductance Ca2+-activated K+ channels is controlled by both cytoplasmic Ca2+ and membrane potential. To study the mechanism of voltage-dependent gating, we examined mSlo Ca2+-activated K+ currents in excised macropatches from Xenopus oocytes in the virtual absence of Ca2+ (<1 nM). In response to a voltage step, I-K activates with an exponential time course, following a brief delay. The delay suggests that rapid transitions precede channel opening. The later exponential time course suggests that activation also involves a slower rate-limiting step. However, the time constant of I-K relaxation [tau(I-K)] exhibits a complex voltage dependence that is inconsistent viith models that contain a single rate limiting step. tau(I-K) increases weakly with voltage from -500 to -20 mV, with an equivalent charge (z) of only 0.14 e, and displays a stronger voltage dependence from +30 to +140 mV (z = 0.49 e), which then decreases from +180 to +240 mV (z = -0.29 e). Similarly, the steady state G(K)-V relationship exhibits a maximum voltage dependence (z = 2 e) from 0 to +100 mV, and is weakly voltage dependent (z congruent to 0.4 e) at more negative voltages, where P-o = 10(-5)-10(-6). These results can be understood in terms of a gating scheme where a central transition between a closed and an open conformation is allosterically regulated by the state of four independent and identical voltage sensors. In the absence of Ca2+, this allosteric mechanism results in a gating scheme with five closed (C) and five open (0) states, where the majority of the channel's voltage dependence results from rapid C-C and O-O transitions, whereas the C-O transitions are rate limiting and weakly voltage dependent. These conclusions not only provide a framework for interpreting studies of large conductance Ca2+-activated K+ channel voltage gating, but also have important implications for understanding the mechanism of Ca2+ sensitivity.
引用
收藏
页码:277 / 304
页数:28
相关论文
共 84 条
[1]   Contribution of the S4 segment to gating charge in the Shaker K+ channel [J].
Aggarwal, SK ;
MacKinnon, R .
NEURON, 1996, 16 (06) :1169-1177
[2]  
Almers W, 1978, Rev Physiol Biochem Pharmacol, V82, P96, DOI 10.1007/BFb0030498
[3]   CHARGE MOVEMENT ASSOCIATED WITH OPENING AND CLOSING OF ACTIVATION GATES OF NA CHANNELS [J].
ARMSTRONG, CM ;
BEZANILLA, F .
JOURNAL OF GENERAL PHYSIOLOGY, 1974, 63 (05) :533-552
[4]   Voltage-insensitive gating after charge-neutralizing mutations in the S4 segment of Shaker channels [J].
Bao, HX ;
Hakeem, A ;
Henteleff, M ;
Starkus, JG ;
Rayner, MD .
JOURNAL OF GENERAL PHYSIOLOGY, 1999, 113 (01) :139-151
[5]   PROPERTIES OF SINGLE CALCIUM-ACTIVATED POTASSIUM CHANNELS IN CULTURED RAT MUSCLE [J].
BARRETT, JN ;
MAGLEBY, KL ;
PALLOTTA, BS .
JOURNAL OF PHYSIOLOGY-LONDON, 1982, 331 (OCT) :211-230
[6]   A CALCIUM-ACTIVATED POTASSIUM CHANNEL CAUSES FREQUENCY-DEPENDENT ACTION-POTENTIAL FAILURES IN A MAMMALIAN NERVE-TERMINAL [J].
BIELEFELDT, K ;
JACKSON, MB .
JOURNAL OF NEUROPHYSIOLOGY, 1993, 70 (01) :284-298
[7]   REGULATION OF ARTERIAL TONE BY ACTIVATION OF CALCIUM-DEPENDENT POTASSIUM CHANNELS [J].
BRAYDEN, JE ;
NELSON, MT .
SCIENCE, 1992, 256 (5056) :532-535
[8]   POTASSIUM ION CURRENT IN THE SQUID GIANT AXON - DYNAMIC CHARACTERISTIC [J].
COLE, KS ;
MOORE, JW .
BIOPHYSICAL JOURNAL, 1960, 1 (01) :1-14
[9]   RELAXATION AND FLUCTUATIONS OF MEMBRANE CURRENTS THAT FLOW THROUGH DRUG-OPERATED CHANNELS [J].
COLQUHOUN, D ;
HAWKES, AG .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1977, 199 (1135) :231-262
[10]   Allosteric gating of a large conductance Ca-activated K+ channel [J].
Cox, DH ;
Cui, J ;
Aldrich, RW .
JOURNAL OF GENERAL PHYSIOLOGY, 1997, 110 (03) :257-281