Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system

被引:200
作者
de la Rosa, DA
Zhang, P
Shao, D
White, F
Canessa, CM [1 ]
机构
[1] Yale Univ, Dept Cellular & Mol Physiol, New Haven, CT 06520 USA
[2] Yale Univ, Dept Neurol, New Haven, CT 06520 USA
关键词
D O I
10.1073/pnas.042688199
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acid-sensitive ion channels (ASIC) are proton-gated ion channels expressed in neurons of the mammalian central and peripheral nervous systems. The functional role of these channels is still uncertain, but they have been proposed to constitute mechano-receptors and/or nociceptors. We have raised specific antibodies for ASIC1, ASIC2, ASIC3, and ASIC4 to examine the distribution of these proteins in neurons from dorsal root ganglia (DRG) and to determine their subcellular localization. Western blot analysis demonstrates that all four ASIC proteins are expressed in DRG and sciatic nerve. Immunohistochemical experiments and functional measurements of unitary currents from the ASICs with the patch-clamp technique indicate that ASIC1 localizes to the plasma membrane of small-, medium-, and large-diameter cells, whereas ASIC2 and ASIC3 are preferentially in medium to large cells. Neurons coexpressing ASIC2 and ASIC3 form predominantly heteromeric ASIC2-3 channels. Two spliced forms, ASIC2a and ASIC2b, colocalize in the same population of DRG neurons. Within cells, the ASICs are present mainly on the plasma membrane of the soma and cellular processes. Functional studies indicate Mat Me pH sensitivity for inactivation of ASIC1 is much higher than the one for activation; hence, increases in proton concentration will inactivate the channel. These functional properties and localization in DRG have profound implications for the putative functional roles of ASICs in the nervous system.
引用
收藏
页码:2326 / 2331
页数:6
相关论文
共 31 条
[1]   PROTON-INDUCED SODIUM CURRENT IN FROG ISOLATED DORSAL-ROOT GANGLION-CELLS [J].
AKAIKE, N ;
KRISHTAL, OA ;
MARUYAMA, T .
JOURNAL OF NEUROPHYSIOLOGY, 1990, 63 (04) :805-813
[2]   A new member of the acid-sensing ion channel family [J].
Akopian, AN ;
Chen, CC ;
Ding, YN ;
Cesare, P ;
Wood, JN .
NEUROREPORT, 2000, 11 (10) :2217-2222
[3]   Neuropeptide FF and FMRFamide potentiate acid-evoked currents from sensory neurons and proton-gated DEG/ENaC channels [J].
Askwith, CC ;
Cheng, C ;
Ikuma, M ;
Benson, C ;
Price, MP ;
Welsh, MJ .
NEURON, 2000, 26 (01) :133-141
[4]   Molecular cloning and regional distribution of a human proton receptor subunit with biphasic functional properties [J].
Babinski, K ;
Lê, KT ;
Séguéla, P .
JOURNAL OF NEUROCHEMISTRY, 1999, 72 (01) :51-57
[5]   Mammalian ASIC2a and ASIC3 subunits co-assemble into heteromeric proton-gated channels sensitive to Gd3+ [J].
Babinski, K ;
Catarsi, S ;
Biagini, G ;
Séguéla, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (37) :28519-28525
[6]   The capsaicin receptor: a heat-activated ion channel in the pain pathway [J].
Caterina, MJ ;
Schumacher, MA ;
Tominaga, M ;
Rosen, TA ;
Levine, JD ;
Julius, D .
NATURE, 1997, 389 (6653) :816-824
[7]   A sensory neuron-specific, proton-gated ion channel [J].
Chen, CC ;
England, S ;
Akopian, AN ;
Wood, JN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (17) :10240-10245
[8]   THE REGULATION AND MODULATION OF PH IN THE NERVOUS-SYSTEM [J].
CHESLER, M .
PROGRESS IN NEUROBIOLOGY, 1990, 34 (05) :401-427
[9]  
Fyfe GK, 1998, SEMIN NEPHROL, V18, P138
[10]   Transport and localization of the DEG/ENaC ion channel BNaC1α to peripheral mechanosensory terminals of dorsal root ganglia neurons [J].
García-Añoveros, J ;
Samad, TA ;
Zuvela-Jelaska, L ;
Woolf, CJ ;
Corey, DR .
JOURNAL OF NEUROSCIENCE, 2001, 21 (08) :2678-2686