Consistent, covariant and multiplicative anomalies

被引:7
作者
Cognola, G [1 ]
Zerbini, S
机构
[1] Univ Trent, Dipartimento Fis, I-38050 Trento, Italy
[2] Ist Nazl Fis Nucl, Grp Collegato Trento, I-38050 Trento, Italy
关键词
anomalies; vector-axial model;
D O I
10.1023/A:1007682717613
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the multiplicative anomaly in the vector-axial-vector model, which apparently has nothing to do with the breaking of classical current symmetries, nevertheless is strictly related to the well known consistent and covariant anomalies.
引用
收藏
页码:375 / 383
页数:9
相关论文
共 30 条
[1]  
ADLER S, 1969, PHYS REV, V177, P1426
[2]  
ANDRIANOV A, 1984, NUCL PHYS B, V233, P232, DOI 10.1016/0550-3213(84)90413-9
[3]   NONPERTURBATIVE PROOF OF THE NON-ABELIAN ANOMALIES [J].
BALACHANDRAN, AP ;
MARMO, G ;
NAIR, VP ;
TRAHERN, CG .
PHYSICAL REVIEW D, 1982, 25 (10) :2713-2716
[4]   ANOMALOUS WARD IDENTITIES IN SPINOR FIELD THEORIES [J].
BARDEEN, WA .
PHYSICAL REVIEW, 1969, 184 (05) :1848-&
[5]   A PCAC PUZZLE - PI0-)GAMMAGAMMA IN SIGMA-MODEL [J].
BELL, JS ;
JACKIW, R .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1969, 60 (01) :47-+
[6]   Zeta functions on a product of Einstein manifolds, and the multiplicative anomaly [J].
Bytsenko, AA ;
Williams, FL .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (02) :1075-1086
[7]   Quantum fields and extended objects in space-times with constant curvature spatial section [J].
Bytsenko, AA ;
Cognola, G ;
Vanzo, L ;
Zerbini, S .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 266 (1-2) :1-126
[8]   NON-ABELIAN ANOMALIES ON A CURVED SPACE WITH TORSION [J].
COGNOLA, G ;
GIACCONI, P .
PHYSICAL REVIEW D, 1989, 39 (10) :2987-2992
[9]   EFFECTIVE LAGRANGIAN AND ENERGY-MOMENTUM TENSOR IN DESITTER SPACE [J].
DOWKER, JS ;
CRITCHLEY, R .
PHYSICAL REVIEW D, 1976, 13 (12) :3224-3232
[10]  
DOWKER JS, 1998, MUTP984