Superoxide production and expression of Nox family proteins in human atherosclerosis

被引:742
作者
Sorescu, D
Weiss, D
Lassègue, B
Clempus, RE
Szöcs, K
Sorescu, GP
Valppu, L
Quinn, MT
Lambeth, JD
Vega, JD
Taylor, WR
Griendling, KK
机构
[1] Emory Univ, Div Cardiol, Dept Med, Atlanta, GA 30322 USA
[2] Emory Univ, Div Cardiol, Dept Pathol & Lab Med, Atlanta, GA 30322 USA
[3] Emory Univ, Dept Surg, Atlanta, GA 30322 USA
[4] Montana State Univ, Dept Vet Mol Biol, Bozeman, MT 59717 USA
关键词
enzymes; coronary disease; arteries; atherosclerosis;
D O I
10.1161/01.CIR.0000012917.74432.66
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background-NAD(P)H oxidases are important sources of superoxide in the vasculature, the activity of which is associated with risk factors for human atherosclerosis. This study was designed to investigate the localization of superoxide production and the expression of the Nox family of NAD(P)H oxidase proteins (gp91phox, Nox1, and Nox4) in nonatherosclerotic and atherosclerotic human coronary arteries. Methods and Results-In coronary artery segments from explanted human hearts, we examined intracellular superoxide production with dihydroethidium. In nonatherosclerotic coronary arteries, superoxide was present homogenously throughout the intima, media, and adventitia. In atherosclerotic arteries, there was an additional intense area of superoxide in the plaque shoulder, which is rich in macrophages and a-actin-positive cells. p22phox colocalized with gp91phox mainly in macrophages, whereas Nox4 was found only in nonphagocytic vascular cells. Expression of gp91phox and p22phox mRNA was associated with the severity of atherosclerosis. gp91phox correlated with the plaque macrophage content, whereas Nox4 correlated with the content of alpha-actin-positive cells. Nox1 expression was low both in human coronary arteries and isolated vascular cells. Conclusions-Several Nox proteins, including gp91phox and Nox4, may contribute to increased intracellular oxidative stress in human coronary atherosclerosis in a cell-specific manner and thus may be involved in the genesis and progression of human coronary atherosclerotic disease.
引用
收藏
页码:1429 / 1435
页数:7
相关论文
共 23 条
[1]   Expression of NADH/NADPH oxidase p22phox in human coronary arteries [J].
Azumi, H ;
Inoue, N ;
Takeshita, S ;
Rikitake, Y ;
Kawashima, S ;
Hayashi, Y ;
Itoh, H ;
Yokoyama, M .
CIRCULATION, 1999, 100 (14) :1494-1498
[2]   NADPH oxidase: An update [J].
Babior, BM .
BLOOD, 1999, 93 (05) :1464-1476
[3]   p47phox is required for atherosclerotic lesion progression in ApoE-/- mice [J].
Barry-Lane, PA ;
Patterson, C ;
van der Merwe, M ;
Hu, ZY ;
Holland, SM ;
Yeh, ETH ;
Runge, MS .
JOURNAL OF CLINICAL INVESTIGATION, 2001, 108 (10) :1513-1522
[4]  
BECHLAURSEN J, 1997, CIRCULATION, V95, P588
[5]   Investigation into the sources of superoxide in human blood vessels - Angiotensin II increases superoxide production in human internal mammary arteries [J].
Berry, C ;
Hamilton, CA ;
Brosnan, J ;
Magill, FG ;
Berg, GA ;
McMurray, JJV ;
Dominiczak, AF .
CIRCULATION, 2000, 101 (18) :2206-2212
[6]   TOPOLOGICAL MAPPING OF NEUTROPHIL CYTOCHROME-B EPITOPES WITH PHAGE-DISPLAY LIBRARIES [J].
BURRITT, JB ;
QUINN, MT ;
JUTILA, MA ;
BOND, CW ;
JESAITIS, AJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (28) :16974-16980
[7]   DISTRIBUTION OF CIRCUMFERENTIAL STRESS IN RUPTURED AND STABLE ATHEROSCLEROTIC LESIONS - A STRUCTURAL-ANALYSIS WITH HISTOPATHOLOGICAL CORRELATION [J].
CHENG, GC ;
LOREE, HM ;
KAMM, RD ;
FISHBEIN, MC ;
LEE, RT .
CIRCULATION, 1993, 87 (04) :1179-1187
[8]   Identification of Renox, an NAD(P)H oxidase in kidney [J].
Geiszt, M ;
Kopp, JB ;
Várnai, P ;
Leto, TL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (14) :8010-8014
[9]   A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall [J].
Görlach, A ;
Brandes, RP ;
Nguyen, K ;
Amidi, M ;
Dehghani, F ;
Busse, R .
CIRCULATION RESEARCH, 2000, 87 (01) :26-32
[10]   NAD(P)H oxidase - Role in cardiovascular biology and disease [J].
Griendling, KK ;
Sorescu, D ;
Ushio-Fukai, M .
CIRCULATION RESEARCH, 2000, 86 (05) :494-501