Surface-limited oxygen transport and electrode properties of La2Ni0.8Cu0.2O4+δ

被引:117
作者
Kharton, VV [1 ]
Tsipis, EV
Yaremchenko, AA
Frade, JR
机构
[1] Univ Aveiro, CICECO, Dept Ceram & Glass Engn, P-3810193 Aveiro, Portugal
[2] Belarusian State Univ, Inst Physicochem Problems, Minsk 220050, BELARUS
关键词
lanthanum nickelate; IT SOFC cathode; oxygen permeation; cathodic overpotential; polarization resistance;
D O I
10.1016/j.ssi.2003.11.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The submicron powder of La2Ni0.8Cu0.2O4+delta with K2NiF4-type structure, having grain size of 30-60 nm, was synthesized via glycine-nitrate process (GNP) and used for the preparation of porous cathode layers applied onto (La0.9Sr0.1)(0.98)Ga0.8Mg0.2O3-delta (LSGM) solid electrolyte. In air, dense ceramics of LaNi0.8Cu0.2O4+delta possess thermal expansion coefficient of 13.3 x 10(-6) K-1 at 400-1240 K, p-type electronic conductivity of 50-85 S/cm at 800-1300 K and relatively high oxygen permeability limited by the surface exchange. These properties provide a substantially high performance of porous electrodes, exhibiting cathodic overpotential lower than 50 mV at 1073 K and current density of 200 mA/cm(2). As for the oxygen transport through dense membranes, the results on electrode behavior, including the overpotential-microstructure relationships and the p(O-2) dependence of polarization resistance, suggest that the cathodic reaction rate is affected by surface-related processes. Due to this, electrode performance can be considerably enhanced by surface activation, particularly via impregnation with Pr-containing solutions, and also by decreasing fabrication temperature. At 873 K, the surface modification with praseodymium oxide decreases overpotential of La2Ni0.8Cu0.2O4+delta cathode, screen-printed onto LSGM and annealed at 1473 K, from 330 down to approximately 175 mV at 50 mA/cm(2). (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:327 / 337
页数:11
相关论文
共 40 条
[1]   Electrode kinetics of porous mixed-conducting oxygen electrodes [J].
Adler, SB ;
Lane, JA ;
Steele, BCH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (11) :3554-3564
[2]   Study of transition metal oxide doped LaGaO3 as electrode materials for LSGM-based solid oxide fuel cells [J].
Chen, FL ;
Liu, ML .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 1998, 3 (01) :7-14
[3]   GLYCINE NITRATE COMBUSTION SYNTHESIS OF OXIDE CERAMIC POWDERS [J].
CHICK, LA ;
PEDERSON, LR ;
MAUPIN, GD ;
BATES, JL ;
THOMAS, LE ;
EXARHOS, GJ .
MATERIALS LETTERS, 1990, 10 (1-2) :6-12
[4]   Role of the reference position on overpotential measurements [J].
Figueiredo, FM ;
Frade, J ;
Marques, FMB .
BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO, 1999, 38 (06) :639-642
[5]   Thermal expansion of Sr- and Mg-doped LaGaO3 [J].
Hayashi, H ;
Suzuki, M ;
Inaba, H .
SOLID STATE IONICS, 2000, 128 (1-4) :131-139
[6]   Oxide-ion conducting ceramics for solid oxide fuel cells [J].
Huang, K ;
Wan, J ;
Goodenough, JB .
JOURNAL OF MATERIALS SCIENCE, 2001, 36 (05) :1093-1098
[7]   Characterization of Sr-doped LaMnO3 and LaCoO3 as cathode materials for a doped LaGaO3 ceramic fuel cell [J].
Huang, KQ ;
Feng, M ;
Goodenough, JB ;
Schmerling, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (11) :3630-3636
[8]   Electrode performance test on single ceramic fuel cells using as electrolyte Sr- and Mg-doped LaGaO3 [J].
Huang, KQ ;
Feng, M ;
Goodenough, JB ;
Milliken, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (10) :3620-3624
[9]   Intermediate temperature solid oxide fuel cells using a new LaGaO3 based oxide ion conductor -: I.: Doped SmCoO3 as a new cathode material [J].
Ishihara, T ;
Honda, M ;
Shibayama, T ;
Minami, H ;
Nishiguchi, H ;
Takita, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (09) :3177-3183
[10]   DOPED LAGAO3 PEROVSKITE-TYPE OXIDE AS A NEW OXIDE IONIC CONDUCTOR [J].
ISHIHARA, T ;
MATSUDA, H ;
TAKITA, Y .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (09) :3801-3803