Insulin signalling: Metabolic pathways and mechanisms for specificity

被引:143
作者
Nystrom, FH [1 ]
Quon, MJ [1 ]
机构
[1] NHLBI, Hypertens Endocrine Branch, NIH, Bethesda, MD 20892 USA
关键词
signal transduction; signal specificity; GLUT4; insulin resistance;
D O I
10.1016/S0898-6568(99)00025-X
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Biological actions of insulin are mediated by the insulin receptor, a member of a large family of receptor tyrosine kinases (RTK). Signal transduction by the insulin receptor follows a paradigm for RTK signalling Many intracellular signalling molecules contain multiple modular domains that mediate protein-protein interactions and participate in the formation of signalling complexes. Phosphorylation cascades are also a prominent feature of RTK signalling. Distal pathways are difficult to dissect because branching paths emerge from downstream effecters and several upstream inputs converge upon single branch points. Thus, insulin action is determined by complicated signalling networks rather than simple linear pathways. Interestingly, many signalling molecules downstream from the insulin receptor are also activated by a plethora of RTKs. Therefore, mechanisms that generate specificity are required. In this review we discuss recent advances in the elucidation of specific metabolic insulin signalling pathways related to glucose transport, one of the most distinctive biological actions of insulin. We also present examples of potential mechanisms underlying specificity in insulin signalling including interactions between multiple branching pathways, subcellular compartmentalization, tissue-specific expression of key effectors and modulation of signal frequency and amplitude. CELL SIGNAL 11;8:563-574, 1999. (C) 1999 Elsevier Science Inc.
引用
收藏
页码:563 / 574
页数:12
相关论文
共 158 条
[1]   Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosine phosphatases in adipose tissue [J].
Ahmad, F ;
Considine, RV ;
Bauer, TL ;
Ohannesian, JP ;
Marco, CC ;
Goldstein, BJ .
METABOLISM-CLINICAL AND EXPERIMENTAL, 1997, 46 (10) :1140-1145
[2]   Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes [J].
Ahmad, F ;
Azevedo, JL ;
Cortright, R ;
Dohm, GL ;
Goldstein, BJ .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (02) :449-458
[3]   INCREASED ABUNDANCE OF THE RECEPTOR-TYPE PROTEIN-TYROSINE-PHOSPHATASE LAR ACCOUNTS FOR THE ELEVATED INSULIN-RECEPTOR DEPHOSPHORYLATING ACTIVITY IN ADIPOSE-TISSUE OF OBESE HUMAN-SUBJECTS [J].
AHMAD, F ;
CONSIDINE, RV ;
GOLDSTEIN, BJ .
JOURNAL OF CLINICAL INVESTIGATION, 1995, 95 (06) :2806-2812
[4]  
Ahmad F, 1997, J BIOL CHEM, V272, P448
[5]   OSMOTIC LOADING OF NEUTRALIZING ANTIBODIES DEMONSTRATES A ROLE FOR PROTEIN-TYROSINE-PHOSPHATASE 1B IN NEGATIVE REGULATION OF THE INSULIN ACTION PATHWAY [J].
AHMAD, F ;
LI, PM ;
MEYEROVITCH, J ;
GOLDSTEIN, BJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (35) :20503-20508
[6]   Endocytosis of the glucose transporter GLUT4 is mediated by the GTPase dynamin [J].
Al-Hasani, H ;
Kinck, CS ;
Cushman, SW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (28) :17504-17510
[7]   Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha [J].
Alessi, DR ;
James, SR ;
Downes, CP ;
Holmes, AB ;
Gaffney, PRJ ;
Reese, CB ;
Cohen, P .
CURRENT BIOLOGY, 1997, 7 (04) :261-269
[8]   Angiotensin II stimulates tyrosine phosphorylation and activation of insulin receptor substrate 1 and protein-tyrosine phosphatase 1D in vascular smooth muscle cells [J].
Ali, MS ;
Schieffer, B ;
Delafontaine, P ;
Bernstein, KE ;
Ling, BN ;
Marrero, MB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (19) :12373-12379
[9]   Different subcellular distribution and regulation of expression of insulin receptor substrate (IRS)-3 from those of IRS-1 and IRS-2 [J].
Anai, O ;
Ono, H ;
Funaki, M ;
Fukushima, Y ;
Inukai, K ;
Ogihara, T ;
Sakoda, H ;
Onishi, Y ;
Yazaki, Y ;
Kikuchi, M ;
Oka, Y ;
Asano, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (45) :29686-29692
[10]   BINDING OF SH2 DOMAINS OF PHOSPHOLIPASE-C-GAMMA-1, GAP, AND SRC TO ACTIVATED GROWTH-FACTOR RECEPTORS [J].
ANDERSON, D ;
KOCH, CA ;
GREY, L ;
ELLIS, C ;
MORAN, MF ;
PAWSON, T .
SCIENCE, 1990, 250 (4983) :979-982