Modeling Intracerebral Hemorrhage Growth and Response to Anticoagulation

被引:30
作者
Greenberg, Charles H. [2 ,3 ]
Frosch, Matthew P. [4 ]
Goldstein, Joshua N. [5 ]
Rosand, Jonathan [1 ]
Greenberg, Steven M. [1 ]
机构
[1] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Neurol, Boston, MA 02115 USA
[2] Univ Calif San Francisco, Dept Pharmaceut Chem, Dept Bioengn & Therapeut, San Francisco, CA USA
[3] Univ Calif San Francisco, Calif Inst Quantitat Biosci, San Francisco, CA USA
[4] Harvard Univ, Massachusetts Gen Hosp, Sch Med, CS Kubik Lab Neuropathol, Boston, MA USA
[5] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Emergency Med, Boston, MA USA
来源
PLOS ONE | 2012年 / 7卷 / 10期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
BLOOD-PRESSURE REDUCTION; FRESH-FROZEN PLASMA; CEREBRAL-HEMORRHAGE; HEMATOMA EXPANSION; INTRACRANIAL HEMORRHAGE; WARFARIN; THERAPY; COAGULOPATHY; MICROBLEEDS;
D O I
10.1371/journal.pone.0048458
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The mechanism for hemorrhage enlargement in the brain, a key determinant of patient outcome following hemorrhagic stroke, is unknown. We performed computer-based stochastic simulation of one proposed mechanism, in which hemorrhages grow in "domino" fashion via secondary shearing of neighboring vessel segments. Hemorrhages were simulated by creating an initial site of primary bleeding and an associated risk of secondary rupture at adjacent sites that decayed over time. Under particular combinations of parameters for likelihood of secondary rupture and time-dependent decay, a subset of lesions expanded, creating a bimodal distribution of microbleeds and macrobleeds. Systematic variation of the model to simulate anticoagulation yielded increases in both macrobleed occurrence (26.9%, 53.2%, and 70.0% of all hemorrhagic events under conditions simulating no, low-level, and high-level anticoagulation) and final hemorrhage size (median volumes 111, 276, and 412 under the same three conditions), consistent with data from patients with anticoagulant-related brain hemorrhages. Reversal from simulated high-level anticoagulation to normal coagulation was able to reduce final hemorrhage size only if applied relatively early in the course of hemorrhage expansion. These findings suggest that a model based on a secondary shearing mechanism can account for some of the clinically observed properties of intracerebral hemorrhage, including the bimodal distribution of volumes and the enhanced hemorrhage growth seen with anticoagulation. Future iterations of this model may be useful for elucidating the effects of hemorrhage growth of factors related to secondary shearing (such as small vessel pathology) or time-dependent decay (such as hemostatic agents).
引用
收藏
页数:6
相关论文
共 26 条
[1]   Intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT): a randomised pilot trial [J].
Anderson, Craig S. ;
Huang, Yining ;
Wang, Ji Guang ;
Arima, Hisatomi ;
Neal, Bruce ;
Peng, Bin ;
Heeley, Emma ;
Skulina, Christian ;
Parsons, Mark W. ;
Kim, Jong Sung ;
Tao, Qing Ling ;
Li, Yue Chun ;
Jiang, Jian Dong ;
Tai, Li Wen ;
Zhang, Jin Li ;
Xu, En ;
Cheng, Yan ;
Heritier, Stephan ;
Morgenstern, Lewis B. ;
Chalmers, John .
LANCET NEUROLOGY, 2008, 7 (05) :391-399
[2]   APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: a genetic association study [J].
Biffi, Alessandro ;
Anderson, Christopher D. ;
Jagiella, Jeremiasz M. ;
Schmidt, Helena ;
Kissela, Brett ;
Hansen, Bjorn M. ;
Jimenez-Conde, Jordi ;
Pires, Caroline R. ;
Ayres, Alison M. ;
Schwab, Kristin ;
Cortellini, Lynelle ;
Pera, Joanna ;
Urbanik, Andrzej ;
Romero, Javier M. ;
Rost, Natalia S. ;
Goldstein, Joshua N. ;
Viswanathan, Anand ;
Pichler, Alexander ;
Enzinger, Christian ;
Rabionet, Raquel ;
Norrving, Bo ;
Tirschwell, David L. ;
Selim, Magdy ;
Brown, Devin L. ;
Silliman, Scott L. ;
Worrall, Bradford B. ;
Meschia, James F. ;
Kidwell, Chelsea S. ;
Broderick, Joseph P. ;
Greenberg, Steven M. ;
Roquer, Jaume ;
Lindgren, Arne ;
Slowik, Agnieszka ;
Schmidt, Reinhold ;
Woo, Daniel ;
Rosand, Jonathan .
LANCET NEUROLOGY, 2011, 10 (08) :702-709
[3]  
Boyko MJ, 2012, STROKE, V43, pA3046
[4]   VOLUME OF INTRACEREBRAL HEMORRHAGE - A POWERFUL AND EASY-TO-USE PREDICTOR OF 30-DAY MORTALITY [J].
BRODERICK, JP ;
BROTT, TG ;
DULDNER, JE ;
TOMSICK, T ;
HUSTER, G .
STROKE, 1993, 24 (07) :987-993
[5]   Use of recombinant factor VIIa in patients with warfarin-associated intracranial hemorrhage [J].
Brody, DL ;
Aiyagari, V ;
Shackleford, AM ;
Diringer, MN .
NEUROCRITICAL CARE, 2005, 2 (03) :263-267
[6]   Early hemorrhage growth in patients with intracerebral hemorrhage [J].
Brott, T ;
Broderick, J ;
Kothari, R ;
Barsan, W ;
Tomsick, T ;
Sauerbeck, L ;
Spilker, J ;
Duldner, J ;
Khoury, J .
STROKE, 1997, 28 (01) :1-5
[7]  
Brouwers HB, 2012, STROKE J CEREBRAL CI
[8]   Hematoma Growth in Oral Anticoagulant Related Intracerebral Hemorrhage [J].
Cucchiara, Brett ;
Messe, Steven ;
Sansing, Lauren ;
Kasner, Scott ;
Lyden, Patrick .
STROKE, 2008, 39 (11) :2993-2996
[9]   Defining hematoma expansion in intracerebral hemorrhage Relationship with patient outcomes [J].
Dowlatshahi, D. ;
Demchuk, A. M. ;
Flaherty, M. L. ;
Ali, M. ;
Lyden, P. L. ;
Smith, E. E. .
NEUROLOGY, 2011, 76 (14) :1238-1244