Sonic hedgehog enhances somite cell viability and formation of primary slow muscle fibers in avian segmented mesoderm

被引:44
作者
Cann, GM [1 ]
Lee, JW [1 ]
Stockdale, FE [1 ]
机构
[1] Stanford Univ, Dept Med, Stanford, CA 94305 USA
来源
ANATOMY AND EMBRYOLOGY | 1999年 / 200卷 / 03期
关键词
somite explant culture; sonic hedgehog protein; myogenic induction; primary fiber type diversity; apoptosis;
D O I
10.1007/s004290050276
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
Primary skeletal muscle fibers first form in the segmented portions of paraxial mesoderm called somites. Although the neural tube and notochord are recognized as crucial in patterning myogenic cell lineages during avian and mammalian semitic myogenesis, the source, identities, and actions of the signals governing this process remain controversial. It has been shown that signals emanating from the ventral neural tube and/or notochord alone or Shh alone serve to activate MyoD expression in somites. However, beyond a role in initiating MyoD expression, little is known about the effects of Shh on primary muscle fiber formation in somites of higher vertebrates. The studies reported here investigate how the ventral neural tube promotes myogenesis and compare the effects of the ventral neural tube with those of purified Shh protein on fiber formation in somites. We show that purified Shh protein mimics actions of the ventral neural tube on somites including initiation of muscle fiber formation, enhancement of numbers of primary muscle fibers, and particularly, the formation of primary fibers that express slow myosin. There is a marked increase in slow myosin expression in fibers in response to Shh as somites mature. The effects of ventral neural tube on fiber formation can be blocked by disrupting the Shh signaling pathway by increasing the activity of semitic cyclic AMP-dependent protein kinase A. Furthermore, it was demonstrated that apoptosis is a dominant fate of somite cells, but not semitic muscle fibers, when cultured in the absence of the neural tube, and that application of Shh protein to somites reduced apoptosis. The block to apoptosis by Shh is a manifestation of the maturity of the somite with a progressive increase in the block as somites are displaced rostrally from somite III forward. We conclude that purified Shh protein in mimicking the effects of the ventral neural tube on segmented mesoderm can exert pleiotropic effects during primary myogenesis, including: control of the proliferative expansion of myogenic progenitor cells, antagonism of cell death pathways within the precursors to muscle fibers, and during the crucial process of primary myogenesis, can exert an effect on diversification of muscle fiber types.
引用
收藏
页码:239 / 252
页数:14
相关论文
共 69 条
  • [1] The expression and regulation of follistatin and a follistatin-like gene during avian somite compartmentalization and myogenesis
    Amthor, H
    Connolly, D
    Patel, K
    BrandSaberi, B
    Wilkinson, DG
    Cooke, J
    Christ, B
    [J]. DEVELOPMENTAL BIOLOGY, 1996, 178 (02) : 343 - 362
  • [2] [Anonymous], CELL
  • [3] AOYAMA H, 1988, DEVELOPMENT, V104, P15
  • [4] Apoptosis of epaxial myotome in Danforth's short-tail (SD) mice in somites that form following notochord degeneration
    Asakura, A
    Tapscott, SJ
    [J]. DEVELOPMENTAL BIOLOGY, 1998, 203 (02) : 276 - 289
  • [5] Notochord induction of zebrafish slow muscle mediated by Sonic hedgehog
    Blagden, CS
    Currie, PD
    Ingham, PW
    Hughes, SM
    [J]. GENES & DEVELOPMENT, 1997, 11 (17) : 2163 - 2175
  • [6] Distinct signal/response mechanisms regulate pax1 and QmyoD activation in sclerotomal and myotomal lineages of quail somites
    Borycki, AG
    Strunk, KE
    Savary, R
    Emerson, CP
    [J]. DEVELOPMENTAL BIOLOGY, 1997, 185 (02) : 185 - 200
  • [7] Borycki AG, 1998, DEVELOPMENT, V125, P777
  • [8] MYOGENIC SPECIFICATION OF SOMITES IS MEDIATED BY DIFFUSIBLE FACTORS
    BUFFINGER, N
    STOCKDALE, FE
    [J]. DEVELOPMENTAL BIOLOGY, 1995, 169 (01) : 96 - 108
  • [9] BUFFINGER N, 1994, DEVELOPMENT, V120, P1443
  • [10] Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function
    Chiang, C
    Ying, LTT
    Lee, E
    Young, KE
    Corden, JL
    Westphal, H
    Beachy, PA
    [J]. NATURE, 1996, 383 (6599) : 407 - 413