Involvement of surface polysaccharides in the organic acid resistance of Shiga Toxin-producing Escherichia coli O157:H7

被引:50
作者
Barua, S
Yamashino, T
Hasegawa, T
Yokoyama, K
Torii, K
Ohta, M [1 ]
机构
[1] Nagoya Univ, Grad Sch Med, Dept Mol Bacteriol, Showa Ku, Nagoya, Aichi 4668550, Japan
[2] Nagoya Univ, Sch Agr, Mol Microbiol Lab, Chikusa Ku, Nagoya, Aichi 4648601, Japan
[3] Natl Inst Infect Dis, Dept Bacterial & Blood Prod, Tokyo 2080011, Japan
关键词
D O I
10.1046/j.1365-2958.2002.02768.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In general, wild Escherichia coli strains can grow effectively under moderately acidic organic acid-rich conditions. We found that the Shiga Toxin-producing E. coli (STEC) O157:H7 NGY9 grows more quickly than a K-12 strain in Luria-Bertani (LB)-2-morpholinoethanesulphonic acid (MES) broth supplemented with acetic acid (pH 5.4). Hypothesizing that the resistance of STEC O157: H7 to acetic acid is as a result of a mechanism(s) other than those known, we screened for STEC mutants sensitive to acetic acid. NGY9 was subjected to mini-Tn5 mutagenesis and, from 50 000 colonies, five mutants that showed a clear acetic acid-sensitive phenotype were isolated. The insertion of mini-Tn5 in three mutants occurred at the fcl, wecA (rfe) and wecB (rffE) genes and caused loss of surface O-polysaccharide, loss of both O-polysaccharide and enterobacterial common antigen (ECA) and loss of ECA respectively. The other two mutants showed inactivation of the waaG (rfaG) gene but at different positions that caused a deep rough mutant with loss of the outer core oligosaccharide of lipopolysaccharide (LPS) as well as phenotypic loss of O-polysaccharide and ECA. With the introduction of plasmids carrying the fcl, wecA, wecB and waaG genes, respectively, all mutants were complemented in their production of O-polysaccharide and ECA, and normal growth was restored in organic acid-rich culture conditions. We also found that the growth of Salmonella LPS mutants Ra, Rb1, Rc, Rd1, Rd2 and Re was suppressed in the presence of acetic acid compared with that of the parents. These results suggest that the full expression of LPS (including O-polysaccharide) and ECA is indispensable to the resistance against acetic acid and other short chain fatty acids in STEC O157:H7 and Salmonella. To the best of our knowledge, this is a newly identified physiological role for O-polysaccharide and ECA as well as an acid resistance mechanism.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 46 条
[1]   Identification of the fucose synthetase gene in the colanic acid gene cluster of Escherichia coli K-12 [J].
Andrianopoulos, K ;
Wang, L ;
Reeves, PR .
JOURNAL OF BACTERIOLOGY, 1998, 180 (04) :998-1001
[2]  
[Anonymous], 1987, Escherichia coli and Salmonella typhimurium: cellular and molecular biology
[3]   STARVATION-INDUCED AND STATIONARY-PHASE-INDUCED ACID TOLERANCE IN ESCHERICHIA-COLI O157/H7 [J].
ARNOLD, KW ;
KASPAR, CW .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (05) :2037-2039
[4]   The acid tolerance response of Salmonella typhimurium provides protection against organic acids [J].
Baik, HS ;
Bearson, S ;
Dunbar, S ;
Foster, JW .
MICROBIOLOGY-SGM, 1996, 142 :3195-3200
[5]   A low PH-inducible, PhoPQ-dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress [J].
Bearson, BL ;
Wilson, L ;
Foster, JW .
JOURNAL OF BACTERIOLOGY, 1998, 180 (09) :2409-2417
[6]   Acid stress responses in enterobacteria [J].
Bearson, S ;
Bearson, B ;
Foster, JW .
FEMS MICROBIOLOGY LETTERS, 1997, 147 (02) :173-180
[7]   ACID TOLERANCE OF ENTEROHEMORRHAGIC ESCHERICHIA-COLI [J].
BENJAMIN, MM ;
DATTA, AR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (04) :1669-1672
[8]   Control of acid resistance in Escherichia coli [J].
Castanie-Cornet, MP ;
Penfound, TA ;
Smith, D ;
Elliott, JF ;
Foster, JW .
JOURNAL OF BACTERIOLOGY, 1999, 181 (11) :3525-3535
[9]   ORGANIC-ACIDS - CHEMISTRY, ANTIBACTERIAL ACTIVITY AND PRACTICAL APPLICATIONS [J].
CHERRINGTON, CA ;
HINTON, M ;
MEAD, GC ;
CHOPRA, I .
ADVANCES IN MICROBIAL PHYSIOLOGY, 1991, 32 :87-108
[10]   GROWTH AND SURVIVAL OF ESCHERICHIA-COLI O257-H7 UNDER ACIDIC CONDITIONS [J].
CONNER, DE ;
KOTROLA, JS .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (01) :382-385