Angioblast-mesenchyme induction of early kidney development is mediated by Wt1 and Vegfa

被引:77
作者
Gao, XB
Chen, X
Taglienti, M
Rumballe, B
Little, MH
Kreidberg, JA
机构
[1] Childrens Hosp, Dept Med, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Pediat, Boston, MA 02115 USA
[3] Univ Queensland, Inst Mol Biosci, Brisbane, Qld 4072, Australia
来源
DEVELOPMENT | 2005年 / 132卷 / 24期
关键词
mouse; Vegf; Wt1; kidney; angioblast; Flk-1/Flk1;
D O I
10.1242/dev.02095
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most studies on kidney development have considered the interaction of the metanephric mesenchyme and the ureteric bud to be the major inductive event that maintains tubular differentiation and branching morphogenesis. The mesenchyme produces Gdnf, which stimulates branching, and the ureteric bud stimulates continued growth of the mesenchyme and differentiation of nephrons from the induced mesenchyme. Null mutation of the Wt1 gene eliminates outgrowth of the ureteric bud, but Gdnf has been identified as a target of Pax2, but not of Wt1. Using a novel system for microinjecting and electroporating plasmid expression constructs into murine organ cultures, it has been demonstrated that Vegfa expression in the mesenchyme is regulated by Wt1. Previous studies had identified a population of Flk1-expressing cells in the periphery of the induced mesenchyme, and adjacent to the stalk of the ureteric bud, and that Vegfa was able to stimulate growth of kidneys in organ culture. Here it is demonstrated that signaling through Flk1 is required to maintain expression of Pax2 in the mesenchyme of the early kidney, and for Pax2 to stimulate expression of Gdnf. However, once Gdnf stimulates branching of the ureteric bud, the Flk1-dependent angioblast signal is no longer required to maintain branching morphogenesis and induction of nephrons. Thus, this work demonstrates the presence of a second set of inductive events, involving the mesenchymal and angioblast populations, whereby Wt1-stimulated expression of Vegfa elicits an as-yet-unidentified signal from the angioblasts, which is required to stimulate the expression of Pax2 and Gdnf, which in turn elicits an inductive signal from the ureteric bud.
引用
收藏
页码:5437 / 5449
页数:13
相关论文
共 59 条
[1]   THE EXPRESSION OF THE WILMS-TUMOR GENE, WT1, IN THE DEVELOPING MAMMALIAN EMBRYO [J].
ARMSTRONG, JF ;
PRITCHARDJONES, K ;
BICKMORE, WA ;
HASTIE, ND ;
BARD, JBL .
MECHANISMS OF DEVELOPMENT, 1993, 40 (1-2) :85-97
[2]  
Brophy PD, 2001, DEVELOPMENT, V128, P4747
[3]   ISOLATION AND CHARACTERIZATION OF A ZINC FINGER POLYPEPTIDE GENE AT THE HUMAN CHROMOSOME-11 WILMS TUMOR LOCUS [J].
CALL, KM ;
GLASER, T ;
ITO, CY ;
BUCKLER, AJ ;
PELLETIER, J ;
HABER, DA ;
ROSE, EA ;
KRAL, A ;
YEGER, H ;
LEWIS, WH ;
JONES, C ;
HOUSMAN, DE .
CELL, 1990, 60 (03) :509-520
[4]   Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells [J].
Chambers, I ;
Colby, D ;
Robertson, M ;
Nichols, J ;
Lee, S ;
Tweedie, S ;
Smith, A .
CELL, 2003, 113 (05) :643-655
[5]   Development of an siRNA-based method for repressing specific genes in renal organ culture and its use to show that the Wt1 tumour suppressor is required for nephron differentiation [J].
Davies, JA ;
Ladomery, M ;
Hohenstein, P ;
Michael, L ;
Shafe, A ;
Spraggon, L ;
Hastie, N .
HUMAN MOLECULAR GENETICS, 2004, 13 (02) :235-246
[6]  
Donovan MJ, 1999, DEV GENET, V24, P252, DOI 10.1002/(SICI)1520-6408(1999)24:3/4<252::AID-DVG8>3.3.CO
[7]  
2-B
[8]  
DRESSLER GR, 1990, DEVELOPMENT, V109, P787
[9]   GDNF signalling through the Ret receptor tyrosine kinase [J].
Durbec, P ;
MarcosGutierrez, CV ;
Kilkenny, C ;
Grigoriou, M ;
Wartiovaara, K ;
Suvanto, P ;
Smith, D ;
Ponder, B ;
Costantini, F ;
Saarma, M ;
Sariola, H ;
Pachnis, V .
NATURE, 1996, 381 (6585) :789-793
[10]   The role of VEGF-A in glomerular development and function [J].
Eremina, V ;
Quaggin, SE .
CURRENT OPINION IN NEPHROLOGY AND HYPERTENSION, 2004, 13 (01) :9-15