Functional effectiveness of the blood brain barrier to small water-soluble molecules in developing and adult opossum (Monodelphis domestica)

被引:118
作者
Ek, CJ
Dziegielewska, KM
Stolp, H
Saunders, NR [1 ]
机构
[1] Univ Melbourne, Dept Pharmacol, Parkville, Vic 3001, Australia
[2] Univ Melbourne, Ctr Neurosci, Parkville, Vic 3001, Australia
关键词
brain barrier permeability; cerebrospinal fluid; tight junction; electron microscopy; biotinylated tracers; choroid plexus; claudin-5;
D O I
10.1002/cne.20885
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We have evaluated a small water-soluble molecule, biotin ethylenediamine (BED, 286 Da), as a permeability tracer across the blood-brain barrier. This molecule was found to have suitable characteristics in that it is stable in plasma, has low plasma protein binding, and appears to behave in a similar manner across brain barriers as established by permeability markers such as sucrose. BED, together with a 3000-Da biotin-dextran (BDA3000), was used to investigate the effectiveness of tight junctions in cortical vessels during development and adulthood of a marsupial opossum (Monodelphis domestica). Marsupial species are born at an early stage of brain development when cortical vessels are just beginning to appear. The tracers were administered systemically to opossums at various ages and localized in brains with light and electron microscopy. In adults, the tight junctions restricted the movement of both tracers. In neonates, as soon as vessels grow into the neocortex, their tight junctions are functionally restrictive, a finding supported by the presence of claudin-5 in endothelial cells. However, both tracers are also found within brain extracellular space soon after intraperitoneal administration. The main route of entry for the tracers into immature neocortex appears to be via the cerebrospinal fluid over the outer (subarachnoid) and inner (ventricular) surfaces of the brain. These experiments demonstrate that the previously described higher permeability of barriers to small molecules in the developing brain does not seem to be due to leakiness of cerebral endothelial tight junctions, but to a route of entry probably via the choroid plexuses and cerebrospinal fluid.
引用
收藏
页码:13 / 26
页数:14
相关论文
共 57 条
[1]   POSTNATAL-DEVELOPMENT OF BULK FLOW IN CEREBROSPINAL-FLUID SYSTEM OF ALBINO-RAT - CLEARANCE OF CARBOXYL-[C-14]INULIN AFTER INTRATHECAL INFUSION [J].
BASS, NH ;
LUNDBORG, P .
BRAIN RESEARCH, 1973, 52 (MAR30) :323-332
[2]   ONTOGENIC EXPRESSION OF THE ERYTHROID-TYPE GLUCOSE-TRANSPORTER (GLUT-1) IN THE TELENCEPHALON OF THE MOUSE - CORRELATION TO THE TIGHTENING OF THE BLOOD-BRAIN-BARRIER [J].
BAUER, H ;
SONNLEITNER, U ;
LAMETSCHWANDTNER, A ;
STEINER, M ;
ADAM, H ;
BAUER, HC .
DEVELOPMENTAL BRAIN RESEARCH, 1995, 86 (1-2) :317-325
[3]   NEOVASCULARIZATION AND THE APPEARANCE OF MORPHOLOGICAL-CHARACTERISTICS OF THE BLOOD-BRAIN-BARRIER IN THE EMBRYONIC MOUSE CENTRAL-NERVOUS-SYSTEM [J].
BAUER, HC ;
BAUER, H ;
LAMETSCHWANDTNER, A ;
AMBERGER, A ;
RUIZ, P ;
STEINER, M .
DEVELOPMENTAL BRAIN RESEARCH, 1993, 75 (02) :269-278
[4]   JUNCTIONS BETWEEN INTIMATELY APPOSED CELL MEMBRANES IN VERTEBRATE BRAIN [J].
BRIGHTMA.MW ;
REESE, TS .
JOURNAL OF CELL BIOLOGY, 1969, 40 (03) :648-+
[6]   FRACTURE FACES OF ZONULAE OCCLUDENTES FROM TIGHT AND LEAKY EPITHELIA [J].
CLAUDE, P ;
GOODENOUGH, DA .
JOURNAL OF CELL BIOLOGY, 1973, 58 (02) :390-400
[7]   ULTRASTRUCTURAL STUDY ON TRANSCAPILLARY EXCHANGES IN DEVELOPING TELENCEPHALON OF CHICKEN [J].
DELORME, P ;
GAYET, J ;
GRIGNON, G .
BRAIN RESEARCH, 1970, 22 (03) :269-&
[8]  
DIAMOND JM, 1974, FED PROC, V33, P2220
[9]  
Dziegielewska KM, 2001, MICROSC RES TECHNIQ, V52, P5, DOI 10.1002/1097-0029(20010101)52:1<5::AID-JEMT3>3.3.CO
[10]  
2-A