Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries

被引:96
作者
Kim, Hyun Woo [1 ]
Manikandan, Palanisamy [1 ]
Lim, Young Jun [1 ]
Kim, Jin Hong [2 ]
Nam, Sang-cheol [2 ]
Kim, Youngsik [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Ulsan, South Korea
[2] Res Inst Ind Sci & Technol RIST, POSCO Global R&D Ctr, Inchon, South Korea
关键词
LITHIUM SECONDARY BATTERIES; POLYMER ELECTROLYTES; ELECTROCHEMICAL PERFORMANCE; CONDUCTIVITY; CHALLENGES; FABRICATION; DECOMPOSITION; DEGRADATION; TEMPERATURE; CONDUCTORS;
D O I
10.1039/c6ta07268b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Concerning the safety aspects of high-voltage Li-ion batteries, a pelletized hybrid solid electrolyte (HSE) was prepared by blending Li7La3Zr2O12 (LLZO) ceramic particles and an ionic liquid electrolyte (ILE) for use in pseudo-solid-state Li-ion batteries. The LLZO particles are enclosed by the ionic liquid as a LLZO-ILE matrix, and are quantified by FESEM elemental mapping. The chemical stability of the LLZO in the ILE is confirmed by powder XRD and FT-IR analysis. The HSE, with an optimized weight ratio of 80% LLZO, 19% Py14TFSI, and 1% lithium bis(trifluoromethanesulfonyl) imide, exhibits good thermal stability, even at 400 degrees C. The optimized HSE reveals an ionic conductivity of 0.4 x 10(-3) S cm(-1) and an electrochemical stability of 5.5 V with Li metal. Pseudo-solid-state Li-ion cells are fabricated using the HSE, and afford initial charge-discharge capacities of 140/130 mA h g(-1) (Li/HSE/LiCoO2) with 99% capacity retention at the 150th cycle. The scope of the HSE is widened to high-voltage (>8 V) pseudo-solid-state Li-ion batteries through a bipolar stacked cell design. Dendrite formation is hindered during cycling in the Li-ion cell. Hence, the present investigation will greatly contribute to the next generation of high-voltage pseudo-solid-state Li-ion batteries.
引用
收藏
页码:17025 / 17032
页数:8
相关论文
共 78 条
[1]   Aluminum based sulfide solid lithium ionic conductors for all solid state batteries [J].
Amaresh, S. ;
Karthikeyan, K. ;
Kim, K. J. ;
Lee, Y. G. ;
Lee, Y. S. .
NANOSCALE, 2014, 6 (12) :6661-6667
[2]   Nanostructured Anode Material for High-Power Battery System in Electric Vehicles [J].
Amine, Khalil ;
Belharouak, Ilias ;
Chen, Zonghai ;
Tran, Taison ;
Yumoto, Hiroyuki ;
Ota, Naoki ;
Myung, Seung-Taek ;
Sun, Yang-Kook .
ADVANCED MATERIALS, 2010, 22 (28) :3052-3057
[3]   Characterization of Lithium Insertion into NASICON-Type Li1+xTi2-xAlx (PO4)3 and Its Electrochemical Behavior [J].
Arbi, K. ;
Kuhn, A. ;
Sanz, J. ;
Garcia-Alvarado, F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (06) :A654-A659
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]  
Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/NMAT2448, 10.1038/nmat2448]
[6]   Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries [J].
Armstrong, AR ;
Bruce, PG .
NATURE, 1996, 381 (6582) :499-500
[7]  
Broek J., 2016, ADV MATER
[8]   Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12" [J].
Buschmann, Henrik ;
Doelle, Janis ;
Berendts, Stefan ;
Kuhn, Alexander ;
Bottke, Patrick ;
Wilkening, Martin ;
Heitjans, Paul ;
Senyshyn, Anatoliy ;
Ehrenberg, Helmut ;
Lotnyk, Andriy ;
Duppel, Viola ;
Kienle, Lorenz ;
Janek, Juergen .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (43) :19378-19392
[9]   Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries [J].
Campion, CL ;
Li, WT ;
Lucht, BL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (12) :A2327-A2334
[10]   Effect of Surface Microstructure on Electrochemical Performance of Garnet Solid Electrolytes [J].
Cheng, Lei ;
Chen, Wei ;
Kunz, Martin ;
Persson, Kristin ;
Tamura, Nobumichi ;
Chen, Guoying ;
Doeff, Marca .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (03) :2073-2081