Spectral Curvature Clustering (SCC)

被引:324
作者
Chen, Guangliang [1 ]
Lerman, Gilad [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Hybrid linear modeling; Multi-way spectral clustering; Polar curvature; Iterative sampling; Motion segmentation; Face clustering; COMPONENT ANALYSIS; ALGORITHMS;
D O I
10.1007/s11263-008-0178-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents novel techniques for improving the performance of a multi-way spectral clustering framework (Govindu in Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, pp. 1150-1157, 2005; Chen and Lerman, 2007, preprint in the supplementary webpage) for segmenting affine subspaces. Specifically, it suggests an iterative sampling procedure to improve the uniform sampling strategy, an automatic scheme of inferring the tuning parameter from the data, a precise initialization procedure for K-means, as well as a simple strategy for isolating outliers. The resulting algorithm, Spectral Curvature Clustering (SCC), requires only linear storage and takes linear running time in the size of the data. It is supported by theory which both justifies its successful performance and guides our practical choices. We compare it with other existing methods on a few artificial instances of affine subspaces. Application of the algorithm to several real-world problems is also discussed.
引用
收藏
页码:317 / 330
页数:14
相关论文
共 29 条
[1]  
Agarwal S, 2005, PROC CVPR IEEE, P838
[2]  
Agarwal S., 2006, ICML, P17, DOI DOI 10.1145/1143844.1143847
[3]  
[Anonymous], 2002, ADV NEURAL INFORM PR
[4]  
Bader B. W., 2004, SAND20045187 SAND NA
[5]   Lambertian reflectance and linear subspaces [J].
Basri, R ;
Jacobs, DW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (02) :218-233
[6]   k-plane clustering [J].
Bradley, PS ;
Mangasarian, OL .
JOURNAL OF GLOBAL OPTIMIZATION, 2000, 16 (01) :23-32
[7]  
Brand M., 2003, P SIAM INT C DAT MIN
[8]  
CHEN G, 2007, CURVATURE DRIV UNPUB
[9]   Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication [J].
Drineas, Petros ;
Kannan, Ravi ;
Mahoney, Michael W. .
SIAM JOURNAL ON COMPUTING, 2006, 36 (01) :132-157
[10]  
Epstein R., 1995, Proceedings of the Workshop on Physics-Based Modeling in Computer Vision (Cat. No.95TB8038), P108, DOI 10.1109/PBMCV.1995.514675