Backward bifurcation in epidemic control

被引:189
作者
Hadeler, KP [1 ]
VandenDriessche, P [1 ]
机构
[1] UNIV VICTORIA,DEPT MATH & STAT,VICTORIA,BC V8W 3P4,CANADA
关键词
D O I
10.1016/S0025-5564(97)00027-8
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
For a class of epidemiological SIRS models that include public health policies, the stability at the uninfected state and the prevalence at the infected state are investigated. Backward bifurcation from the uninfected state and hysteresis effects are shown to occur for some range of parameters. In such cases, the reproduction number does not describe the necessary elimination effort; rather the effort is described by the value of the critical parameter at the turning point. An explicit expression is given for this quantity. The phenomenon of subcritical bifurcation in epidemic modeling is also discussed in terms of group models, pair formation, and macroparasite infection. (C) 1997 Elsevier Science Inc.
引用
收藏
页码:15 / 35
页数:21
相关论文
共 21 条
[1]   REGULATION AND STABILITY OF HOST-PARASITE POPULATION INTERACTIONS .1. REGULATORY PROCESSES [J].
ANDERSON, RM ;
MAY, RM .
JOURNAL OF ANIMAL ECOLOGY, 1978, 47 (01) :219-247
[2]  
ANDERSON RM, 1978, J ANIM ECOL, V47, P249
[3]  
DIEKMANN O, 1990, J MATH BIOL, V28, P365
[4]   PATTERNS IN THE EFFECTS OF INFECTIOUS-DISEASES ON POPULATION-GROWTH [J].
DIEKMANN, O ;
KRETZSCHMAR, M .
JOURNAL OF MATHEMATICAL BIOLOGY, 1991, 29 (06) :539-570
[5]  
DOYLE MT, 1995, 3 INT C WUERZ WINN, V1, P209
[6]   EDUCATION TO PREVENT AIDS - PROSPECTS AND OBSTACLES [J].
FINEBERG, HV .
SCIENCE, 1988, 239 (4840) :592-596
[7]  
GUPTA S, 1991, NATURE, V350, P356
[8]  
Hadeler K.P., 1984, Lecture Notes in Biomathematics, V54, P356
[9]   A CORE GROUP MODEL FOR DISEASE TRANSMISSION [J].
HADELER, KP ;
CASTILLOCHAVEZ, C .
MATHEMATICAL BIOSCIENCES, 1995, 128 (1-2) :41-55
[10]  
HADELER KP, 1985, LECT NOTES MATH, V1151, P204