Structural mechanism of WASP activation by the enterohaemorrhagic E-coli effector EspFU

被引:83
作者
Cheng, Hui-Chun [1 ,2 ]
Skehan, Brian M. [3 ]
Campellone, Kenneth G. [3 ]
Leong, John M. [3 ]
Rosen, Michael K. [1 ,2 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Dept Biochem, Dallas, TX 75390 USA
[2] Univ Texas SW Med Ctr Dallas, Howard Hughes Med Inst, Dallas, TX 75390 USA
[3] Univ Massachusetts, Sch Med, Dept Mol Genet & Microbiol, Worcester, MA 01655 USA
关键词
D O I
10.1038/nature07160
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
During infection, enterohaemorrhagic Escherichia coli ( EHEC) takes over the actin cytoskeleton of eukaryotic cells by injecting the EspFU protein into the host cytoplasm(1,2). EspFU controls actin by activating members of the Wiskott - Aldrich syndrome protein ( WASP) family(1-5). Here we show that EspFU binds to the autoinhibitory GTPase binding domain ( GBD) in WASP proteins and displaces it from the activity- bearing VCA domain ( for verprolin homology, central hydrophobic and acidic regions). This interaction potently activates WASP and neural ( N)- WASP in vitro and induces localized actin assembly in cells. In the solution structure of the GBD - EspFU complex, EspFU forms an amphipathic helix that binds the GBD, mimicking interactions of the VCA domain in autoinhibited WASP. Thus, EspFU activates WASP by competing directly for the VCA binding site on the GBD. This mechanism is distinct from that used by the eukaryotic activators Cdc42 and SH2 domains, which globally destabilize the GBD fold to release the VCA(6-8). Such diversity of mechanism in WASP proteins is distinct from other multimodular systems, and may result from the intrinsically unstructured nature of the isolated GBD and VCA elements. The structural incompatibility of the GBD complexes with EspFU and Cdc42/SH2, plus high- affinity EspFU binding, enable EHEC to hijack the eukaryotic cytoskeletal machinery effectively.
引用
收藏
页码:1009 / U54
页数:6
相关论文
共 43 条
[1]   The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways [J].
Alto, Neal M. ;
Weflen, Andrew W. ;
Rardin, Matthew J. ;
Yarar, Defne ;
Lazar, Cheri S. ;
Tonikian, Raffi ;
Koller, Antonius ;
Taylor, Susan S. ;
Boone, Charles ;
Sidhu, Sachdev S. ;
Schmid, Sandra L. ;
Hecht, Gail A. ;
Dixon, Jack E. .
JOURNAL OF CELL BIOLOGY, 2007, 178 (07) :1265-1278
[2]   A two-state allosteric model for autoinhibition rationalizes WASP signal integration and targeting [J].
Buck, M ;
Xu, W ;
Rosen, MK .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 338 (02) :271-285
[3]   Global disruption of the WASP autoinhibited structure on Cdc42 binding. Ligand displacement as a novel method for monitoring amide hydrogen exchange [J].
Buck, M ;
Xu, W ;
Rosen, MK .
BIOCHEMISTRY, 2001, 40 (47) :14115-14122
[4]   Enterohaemorrhagic Escherichia coli Tir requires a C-terminal 12-residue peptide to initiate EspFU-mediated actin assembly and harbours N-terminal sequences that influence pedestal length [J].
Campellone, Kenneth G. ;
Brady, Michael J. ;
Alamares, Judith G. ;
Rowe, Daniel C. ;
Skehan, Brian M. ;
Tipper, Donald J. ;
Leong, John M. .
CELLULAR MICROBIOLOGY, 2006, 8 (09) :1488-1503
[5]   EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes nck-independent actin assembly [J].
Campellone, KG ;
Robbins, D ;
Leong, JM .
DEVELOPMENTAL CELL, 2004, 7 (02) :217-228
[6]   A tyrosine-phosphorylated 12-amino-acid sequence of enteropathogenic Escherichia coli Tir binds the host adaptor protein Nck and is required for Nck localization to actin pedestals [J].
Campellone, KG ;
Giese, A ;
Tipper, DJ ;
Leong, JM .
MOLECULAR MICROBIOLOGY, 2002, 43 (05) :1227-1241
[7]   Subversion of actin dynamics by EPEC and EHEC [J].
Caron, E ;
Crepini, VF ;
Simpson, N ;
Knutton, S ;
Garmendia, J ;
Frankel, G .
CURRENT OPINION IN MICROBIOLOGY, 2006, 9 (01) :40-45
[8]   Ribbons [J].
Carson, M .
MACROMOLECULAR CRYSTALLOGRAPHY, PT B, 1997, 277 :493-505
[9]   4-DIMENSIONAL C-13/C-13-EDITED NUCLEAR OVERHAUSER ENHANCEMENT SPECTROSCOPY OF A PROTEIN IN SOLUTION - APPLICATION TO INTERLEUKIN 1-BETA [J].
CLORE, GM ;
KAY, LE ;
BAX, A ;
GRONENBORN, AM .
BIOCHEMISTRY, 1991, 30 (01) :12-18
[10]  
CLORE GM, 1994, METHOD ENZYMOL, V239, P349