Myeloperoxidase-catalyzed oxidation of tyrosine

被引:48
作者
Tien, M [1 ]
机构
[1] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA
关键词
atherosclerosis; stopped flow; free radical; myeloperoxidase; dityrosine;
D O I
10.1006/abbi.1999.1226
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The oxidation of tyr by myleoperoxidase (MPO) is postulated to play a role in atherosclerotic plaque formation. MPO has been localized in plaques and a product of MPO-catalyzed oxidation of tyr, dityrosine, also found in plaques, is proposed to be a protein crosslinking agent. We have performed kinetic studies on the oxidation of tyr by MPO and investigated the role of substrate size on its oxidation. The kinetics of MPO-catalyzed oxidation of tyr where the tyr is free tyr, the dipeptides, tripeptides, and polypeptides were studied by stopped-flow methods. The rate of reaction with enzyme intermediates compound I and compound II are decreased with increasing substrate size. The amount of dityrosine formed was also decreased with increasing substrate size. The ability of sulfhydryl compounds to inhibit MPO-dependent dityrosine formation was investigated with reduced glutathione, cys, and met. Glutathione and cy's both served as substrates for MPO compound I but not compound II, whereas met was not a substrate for either compound I or II. Met, an amino acid postulated to act as a "last chance" antioxidant for proteins, was not able to inhibit dityrosine formation from MPO-catalyzed oxidation of tyr. Glutathione and cys caused partial inhibition; however, it is possible that this inhibition was due to their ability to react directly with MPO rather than trapping the tyr radicals. (C) 1999 Academic Press.
引用
收藏
页码:61 / 66
页数:6
相关论文
共 28 条
[1]  
Anderson S O, 1966, Acta Physiol Scand Suppl, V263, P1
[2]  
BAYSE GS, 1972, BIOCHIM BIOPHYS ACTA, V284, P34
[3]   The role of oxidized lipoproteins in atherogenesis [J].
Berliner, JA ;
Heinecke, JW .
FREE RADICAL BIOLOGY AND MEDICINE, 1996, 20 (05) :707-727
[4]   MINIMALLY MODIFIED LOW-DENSITY-LIPOPROTEIN STIMULATES MONOCYTE ENDOTHELIAL INTERACTIONS [J].
BERLINER, JA ;
TERRITO, MC ;
SEVANIAN, A ;
RAMIN, S ;
KIM, JA ;
BAMSHAD, B ;
ESTERSON, M ;
FOGELMAN, AM .
JOURNAL OF CLINICAL INVESTIGATION, 1990, 85 (04) :1260-1266
[5]   MINIMALLY MODIFIED LOW-DENSITY-LIPOPROTEIN INDUCES MONOCYTE CHEMOTACTIC PROTEIN-1 IN HUMAN ENDOTHELIAL-CELLS AND SMOOTH-MUSCLE CELLS [J].
CUSHING, SD ;
BERLINER, JA ;
VALENTE, AJ ;
TERRITO, MC ;
NAVAB, M ;
PARHAMI, F ;
GERRITY, R ;
SCHWARTZ, CJ ;
FOGELMAN, AM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (13) :5134-5138
[6]   MYELOPEROXIDASE, A CATALYST FOR LIPOPROTEIN OXIDATION, IS EXPRESSED IN HUMAN ATHEROSCLEROTIC LESIONS [J].
DAUGHERTY, A ;
DUNN, JL ;
RATERI, DL ;
HEINECKE, JW .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 94 (01) :437-444
[7]   OXIDATIVE TYROSYLATION OF HIGH-DENSITY-LIPOPROTEIN BY PEROXIDASE ENHANCES CHOLESTEROL REMOVAL FROM CULTURED FIBROBLASTS AND MACROPHAGE FOAM CELLS [J].
FRANCIS, GA ;
MENDEZ, AJ ;
BIERMAN, EL ;
HEINECKE, JW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (14) :6631-6635
[8]  
FRIGUET B, 1994, J BIOL CHEM, V269, P21639
[9]   PURIFICATION AND CHARACTERIZATION OF AN EXTRACELLULAR MN(II)-DEPENDENT PEROXIDASE FROM THE LIGNIN-DEGRADING BASIDIOMYCETE, PHANEROCHAETE-CHRYSOSPORIUM [J].
GLENN, JK ;
GOLD, MH .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1985, 242 (02) :329-341
[10]  
HARRISON JE, 1976, J BIOL CHEM, V251, P1371