Direct Metal Transfer between Periplasmic Proteins Identifies a Bacterial Copper Chaperone

被引:89
作者
Bagai, Ireena [1 ]
Rensing, Christopher [2 ]
Blackburn, Ninian J. [3 ]
McEvoy, Megan M. [1 ]
机构
[1] Univ Arizona, Dept Biochem & Mol Biophys, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ 85721 USA
[3] Oregon Hlth & Sci Univ, Sch Sci & Engn, Oregon Grad Inst, Dept Environm & Biomol Syst, Beaverton, OR 97006 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1021/bi801638m
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transition metals require exquisite handling within cells to ensure that cells are not harmed by an excess of free metal species. In Gram-negative bacteria, copper is required in only small amounts in the periplasm, not in the cytoplasm, so a key aspect of protection under excess metal conditions is to export copper from the periplasm. Additional protection could be conferred by a periplasmic chaperone to limit the free metal species prior to export. Using isothermal titration calorimetry, we have demonstrated that two periplasmic proteins, CusF and CusB, of the Escherichia coli Cu(I)/Ag(I) efflux system undergo a metal-dependent interaction. Through the development of a novel X-ray absorption spectroscopy approach using selenomethionine labeling to distinguish the metal sites of the two proteins, we have demonstrated transfer of Cu(I) occurs between CusF and CusB. The interaction between these proteins is highly specific, as a homologue of CusF with a 51% identical sequence and a similar affinity for metal, did not function in metal transfer. These experiments establish a metallochaperone activity for CusF in the periplasm of Gram-negative bacteria, serving to protect the periplasm from metal-mediated damage.
引用
收藏
页码:11408 / 11414
页数:7
相关论文
共 31 条
[1]   Substrate-linked conformational change in the periplasmic component of a Cu(I)/Ag(I) efflux system [J].
Bagai, Ireena ;
Liu, Wenbo ;
Rensing, Christopher ;
Blackburn, Ninian J. ;
McEvoy, Megan M. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (49) :35695-35702
[2]   State-of-the-art analysis of whole X-ray absorption spectra [J].
Binsted, N ;
Hasnain, SS .
JOURNAL OF SYNCHROTRON RADIATION, 1996, 3 :185-196
[3]  
Binsted N., 1998, EXCURVE 9 2
[4]   Spectroscopic analysis of the trinuclear cluster in the Fet3 protein from yeast, a multinuclear copper oxidase [J].
Blackburn, NJ ;
Ralle, M ;
Hassett, R ;
Kosman, DJ .
BIOCHEMISTRY, 2000, 39 (09) :2316-2324
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   Copper trafficking to the mitochondrion and assembly of copper metalloenzymes [J].
Cobine, Paul A. ;
Pierrel, Fabien ;
Winge, Dennis R. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2006, 1763 (07) :759-772
[7]   Activation of superoxide dismutases: Putting the metal to the pedal [J].
Culotta, Valeria Cizewski ;
Yang, Mei ;
O'Halloran, Thomas V. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2006, 1763 (07) :747-758
[8]  
Culotta VC, 1999, ADV EXP MED BIOL, V448, P247
[9]   Preparation of selenomethionyl proteins for phase determination [J].
Doublie, S .
MACROMOLECULAR CRYSTALLOGRAPHY, PT A, 1997, 276 :523-530
[10]   Transition metal speciation in the cell: Insights from the chemistry of metal ion receptors [J].
Finney, LA ;
O'Halloran, TV .
SCIENCE, 2003, 300 (5621) :931-936