Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis

被引:357
作者
Ren, DT [1 ]
Yang, HP [1 ]
Zhang, SQ [1 ]
机构
[1] Univ Missouri, Dept Biochem, Columbia, MO 65211 USA
关键词
D O I
10.1074/jbc.M109495200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rapid and localized programmed cell death, known as the hypersensitive response (HR) is frequently associated with plant disease resistance. In contrast to our knowledge about the regulation and execution of apoptosis in animal system, information about plant HR is limited. Recent studies implicated the mitogen-activated protein kinase (MAPK) cascade in regulating plant HR cell death as well as several other defense responses during incompatible interactions between plants and pathogens. Here, we report the generation of transgenic Arabidopsis plants that express the active mutants of AtMEK4 and AtMEK5, two closely related MAPK kinases under the control of a steroid-inducible promoter. Induction of the transgene expression by the application of dexamethasone, a steroid, leads to HR-like cell death, which is preceded by the activation of endogenous MAPKs and the generation of hydrogen peroxide. Both prolonged MAPK activation and reactive oxygen species generation have been implicated in the regulation of HR cell death induced by incompatible pathogens. As a result, we speculate that the prolonged activation of the MAPK pathway in cells could disrupt the redox balance, which leads to the generation of reactive oxygen species and eventually HR cell death.
引用
收藏
页码:559 / 565
页数:7
相关论文
共 64 条
[1]   Rapid and transient activation of a myelin basic protein kinase in tobacco leaves treated with harpin from Erwinia amylovora [J].
Adam, AL ;
Pike, S ;
Hoyos, ME ;
Stone, JM ;
Walker, JC ;
Novacky, A .
PLANT PHYSIOLOGY, 1997, 115 (02) :853-861
[2]   Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells [J].
Allan, AC ;
Fluhr, R .
PLANT CELL, 1997, 9 (09) :1559-1572
[3]   A glucocorticoid-mediated transcriptional induction system in transgenic plants [J].
Aoyama, T ;
Chua, NH .
PLANT JOURNAL, 1997, 11 (03) :605-612
[4]   Role of active oxygen species and NO in plant defence responses [J].
Bolwell, GP .
CURRENT OPINION IN PLANT BIOLOGY, 1999, 2 (04) :287-294
[5]   The evolution of the MAP kinase pathways: Coduplication of interacting proteins leads to new signaling cascades [J].
Caffrey, DR ;
O'Neill, LAJ ;
Shields, DC .
JOURNAL OF MOLECULAR EVOLUTION, 1999, 49 (05) :567-582
[6]   Differential activation of four specific MAPK pathways by distinct elicitors [J].
Cardinale, F ;
Jonak, C ;
Ligterink, W ;
Niehaus, K ;
Boller, T ;
Hirt, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (47) :36734-36740
[7]   The Pto kinase mediates a signaling pathway leading to the oxidative burst in tomato [J].
Chandra, S ;
Martin, GB ;
Low, PS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :13393-13397
[8]   The Arabidopsis dnd1 "defense, no death" gene encodes a mutated cyclic nucleotide-gated ion channel [J].
Clough, SJ ;
Fengler, KA ;
Yu, IC ;
Lippok, B ;
Smith, RK ;
Bent, AF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (16) :9323-9328
[9]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[10]   Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells [J].
Corpas, FJ ;
Barroso, JB ;
del Río, LA .
TRENDS IN PLANT SCIENCE, 2001, 6 (04) :145-150