Audio source separation with a single sensor

被引:115
作者
Benaroya, L [1 ]
Bimbot, F
Gribonval, R
机构
[1] METISS, CNR, IRISA, F-35042 Rennes, France
[2] METISS, INRIA, F-35042 Rennes, France
来源
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING | 2006年 / 14卷 / 01期
关键词
audio source separation; Bayesian source separation;
D O I
10.1109/TSA.2005.854110
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we address the problem of audio source separation with one single sensor, using a statistical model of the sources. The approach is based on a learning step from samples of each source separately, during which we train Gaussian scaled mixture models (GSMM). During the separation step, we derive maximum a posteriori (MAP) and/or posterior mean (PM) estimates of the sources, given the observed audio mixture (Bayesian framework). From the experimental point of view, we test and evaluate the method on real audio examples.
引用
收藏
页码:191 / 199
页数:9
相关论文
共 19 条