Transient inhibition of translation initiation by osmotic stress

被引:100
作者
Uesono, Y [1 ]
Toh-e, A [1 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Sci Biol, Bunkyo Ku, Tokyo 1130033, Japan
关键词
D O I
10.1074/jbc.M108848200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cells respond and adapt to changes in the environment. In this study, we examined the effect of environmental stresses on protein synthesis in the yeast Sac. charomyces cerevisiae. We found that osmotic stress causes irreversible inhibition of methionine uptake, transient inhibition of uracil uptake, transient stimulation of glucose uptake, transient repression of ribosomal protein (RP) genes such as CYH2 and RPS27, and the transient inhibition of translation initiation. Rapid inhibition of translation initiation by osmotic stress requires a novel pathway, different from the amino acid-sensing pathway, the glucose-sensing pathway, and the TOR pathway. The Hog1 MAP kinase pathway is not involved in the inhibition of either methionine uptake or translation initiation but is required for the adaptation of translation initiation after inhibition and the repression of RP genes by osmotic stress. These results suggest that the transient inhibition of translation initiation occurs as a result of a combination of both acute inhibition of translation and the long-term activation of translation by the Hog1 pathway.
引用
收藏
页码:13848 / 13855
页数:8
相关论文
共 52 条
[1]   GPD1, WHICH ENCODES GLYCEROL-3-PHOSPHATE DEHYDROGENASE, IS ESSENTIAL FOR GROWTH UNDER OSMOTIC-STRESS IN SACCHAROMYCES-CEREVISIAE, AND ITS EXPRESSION IS REGULATED BY THE HIGH-OSMOLARITY GLYCEROL RESPONSE PATHWAY [J].
ALBERTYN, J ;
HOHMANN, S ;
THEVELEIN, JM ;
PRIOR, BA .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) :4135-4144
[2]  
[Anonymous], METHOD ENZYMOL
[3]   Glucose depletion rapidly inhibits translation initiation in yeast [J].
Ashe, MP ;
De Long, SK ;
Sachs, AB .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (03) :833-848
[4]   A MUTATION ALLOWING AN MESSENGER-RNA SECONDARY STRUCTURE DIMINISHES TRANSLATION OF SACCHAROMYCES-CEREVISIAE ISO-1-CYTOCHROME-C [J].
BAIM, SB ;
PIETRAS, DF ;
EUSTICE, DC ;
SHERMAN, F .
MOLECULAR AND CELLULAR BIOLOGY, 1985, 5 (08) :1839-1846
[5]   TOR controls translation initiation and early G1 progression in yeast [J].
Barbet, NC ;
Schneider, U ;
Helliwell, SB ;
Stansfield, I ;
Tuite, MF ;
Hall, MN .
MOLECULAR BIOLOGY OF THE CELL, 1996, 7 (01) :25-42
[6]   The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factor eIF4G in the yeast Saccharomyces cerevisiae [J].
Berset, C ;
Trachsel, H ;
Altmann, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (08) :4264-4269
[7]   AN OSMOSENSING SIGNAL TRANSDUCTION PATHWAY IN YEAST [J].
BREWSTER, JL ;
DEVALOIR, T ;
DWYER, ND ;
WINTER, E ;
GUSTIN, MC .
SCIENCE, 1993, 259 (5102) :1760-1763
[8]   Remodeling of yeast genome expression in response to environmental changes [J].
Causton, HC ;
Ren, B ;
Koh, SS ;
Harbison, CT ;
Kanin, E ;
Jennings, EG ;
Lee, TI ;
True, HL ;
Lander, ES ;
Young, RA .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (02) :323-337
[9]   OSMOTIC-STRESS AND THE YEAST CYTOSKELETON - PHENOTYPE-SPECIFIC SUPPRESSION OF AN ACTIN MUTATION [J].
CHOWDHURY, S ;
SMITH, KW ;
GUSTIN, MC .
JOURNAL OF CELL BIOLOGY, 1992, 118 (03) :561-571
[10]  
DRAPER MP, 1995, MOL CELL BIOL, V15, P3487