Chaotic scattering in the restricted three-body problem II. Small mass parameters

被引:41
作者
Benet, L [1 ]
Seligman, TH [1 ]
Trautmann, D [1 ]
机构
[1] Ctr Int Ciencias, Cuernavaca 62251, Morelos, Mexico
关键词
restricted three-body problem; chaotic phenomena; scattering;
D O I
10.1023/A:1008335232601
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the scattering motion of the planar restricted three-body problem for small mass parameters mu. We consider the symmetric periodic orbits of this system with mu = 0 that collide with the singularity together with the circular and parabolic solutions of the Kepler problem. These divide the parameter space in a natural way and characterize the main features of the scattering problem for small non-vanishing mu. Indeed, continuation of these orbits yields the primitive periodic orbits of the system for small mu. For different regions of the parameter space, we present scattering functions and discuss the structure of the chaotic saddle. We show that for mu < mu(c) and any Jacobi integral there exist departures from hyperbolicity due to regions of stable motion in phase space. Numerical bounds for mu(c) are given.
引用
收藏
页码:167 / 189
页数:23
相关论文
共 33 条
[1]  
[Anonymous], 1989, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies
[2]   Chaotic scattering in the restricted three-body problem .1. The Copenhagen problem [J].
Benet, L ;
Trautmann, D ;
Seligman, TH .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1997, 66 (02) :203-228
[3]  
BENET L, 1996, THESIS U BASEL
[4]  
BENET L, 1998, IN PRESS PHYSICA D
[5]   TARGETING CHAOTIC ORBITS TO THE MOON THROUGH RECURRENCE [J].
BOLLT, EM ;
MEISS, JD .
PHYSICS LETTERS A, 1995, 204 (5-6) :373-378
[6]  
Bruno A. D., 1994, RESTRICTED 3 BODY PR
[7]  
Coe CJ, 1932, T AM MATH SOC, V34, P811
[8]  
GASPARD P, 1991, QUANTUM CHAOS
[9]  
GREENBERG R, 1984, PLANETARY RINGS
[10]  
Guckenheimer J., 2013, Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields, DOI DOI 10.1007/978-1-4612-1140-2