A non-linear circuit model of hysteresis

被引:8
作者
Cincotti, S [1 ]
Daneri, I [1 ]
机构
[1] Univ Genoa, Dept Biophys & Elect Engn, I-16145 Genoa, Italy
关键词
hysteresis modeling; non-linear circuit;
D O I
10.1109/20.767176
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A non-linear circuit model of hysteretic phenomena is presented. The model provides a close prediction of static hysteresis and exhibits realistic dynamic features. The parameters of the circuit model can be identified by proper identification procedure, based on a representation theorem. Basic features are addressed and discussed. Finally, both numerical comparisons with other models proposed in literature and experimental fittings are presented.
引用
收藏
页码:1247 / 1250
页数:4
相关论文
共 13 条
[1]   A POSSIBLE ALTERNATIVE TO PREISACHS MODEL OF STATIC HYSTERESIS [J].
BOBBIO, S ;
MARRUCCI, G .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1993, 15 (05) :723-733
[2]  
BOZORTH RM, 1955, FERROMAGNETISM
[3]   GENERALIZED HYSTERESIS MODEL [J].
CHUA, LO ;
BASS, SC .
IEEE TRANSACTIONS ON CIRCUIT THEORY, 1972, CT19 (01) :36-&
[4]   Neural network modelling of variable hysteretic inductors [J].
Cincotti, S ;
Marchesi, M ;
Serri, A .
ELECTRONICS LETTERS, 1996, 32 (12) :1054-1055
[5]   Neural network identification of a nonlinear circuit model of hysteresis [J].
Cincotti, S ;
Daneri, I .
ELECTRONICS LETTERS, 1997, 33 (13) :1154-1156
[6]  
DANERI I, 1998, THESIS U GENOA
[7]   FERROMAGNETIC HYSTERESIS [J].
JILES, DC ;
ATHERTON, DL .
IEEE TRANSACTIONS ON MAGNETICS, 1983, 19 (05) :2183-2185
[8]   CONSTRUCTIVE APPROXIMATIONS FOR NEURAL NETWORKS BY SIGMOIDAL FUNCTIONS [J].
JONES, LK .
PROCEEDINGS OF THE IEEE, 1990, 78 (10) :1586-1589
[9]  
Krasnoserskii M.A., 1989, SYSTEM HYSTERESIS
[10]  
Mayergoyz I. D, 1991, MATH MODELS HYSTERES