Brousentsov's ternary principle, Bergman's number system and ternary mirror-symmetrical arithmetic

被引:29
作者
Stakhov, A
机构
[1] Vinnitsa 27, 21027
关键词
D O I
10.1093/comjnl/45.2.221
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We consider an original ternary number system called the ternary mirror-symmetrical number system in the article. It is a synthesis of the classical ternary symmetrical number system and the number system with an irrational base called Bergman's number system. The main engineering result is a development of an original matrix and pipeline ternary mirror-symmetrical adder, which can be used for fast 'pipeline' addition and multiplication in digital signal processors.
引用
收藏
页码:221 / 236
页数:16
相关论文
共 14 条
[1]  
Bergman G., 1957, Math. Mag., V31, P98, DOI 10.2307/3029218
[2]  
Brousentsov N.P., 1965, Small digital computing machine "Setun
[3]  
Brousentsov N.P., 1965, B MOSCOW U MATH MECH, V2, P39
[4]  
BROUSENTSOV NP, 1971, COMPUTERS PROBLEMS C, V8
[5]  
BROUSENTSOV NP, 1979, COMPUTERS PROBLEMS C, V16
[6]  
Chernov VM, 1999, B INFORMAT, V9, P25
[7]  
Hoggat V., 1969, Fibonacci and Lucas Numbers
[8]  
Knuth D. E., ART COMPUTER PROGRAM, V2
[9]  
LICOMENDES P, 1984, FIBONACCI Q, V22, P196
[10]  
MALINOVSKIY BN, 1995, HIST COMPUTERS FACES