Role of protein flexibility in ion permeation: A case study in gramicidin A

被引:33
作者
Bastug, T [1 ]
Gray-Weale, A [1 ]
Patra, SM [1 ]
Kuyucak, S [1 ]
机构
[1] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1529/biophysj.105.073205
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Proteins have a flexible structure, and their atoms exhibit considerable fluctuations under normal operating conditions. However, apart from some enzyme reactions involving ligand binding, our understanding of the role of flexibility in protein function remains mostly incomplete. Here we investigate this question in the realm of membrane proteins that form ion channels. Specifically, we consider ion permeation in the gramicidin A channel, and study how the energetics of ion conduction changes as the channel structure is progressively changed from completely flexible to a fixed one. For each channel structure, the potential of mean force for a permeating potassium ion is determined from molecular dynamics (MD) simulations. Using the same molecular dynamics data for completely flexible gramicidin A, we also calculate the average densities and fluctuations of the peptide atoms and investigate the correlations between these fluctuations and the motion of a permeating ion. Our results show conclusively that peptide flexibility plays an important role in ion permeation in the gramicidin A channel, thus providing another reason - besides the well-known problem with the description of single. le pore water - why this channel cannot be modeled using continuum electrostatics with a fixed structure. The new method developed here for studying the role of protein flexibility on its function clarifies the contributions of the fluctuations to energy and entropy, and places limits on the level of detail required in a coarse-grained model.
引用
收藏
页码:2285 / 2296
页数:12
相关论文
共 42 条
[1]   On the importance of atomic fluctuations, protein flexibility, and solvent in ion permeation [J].
Allen, TW ;
Andersen, OS ;
Roux, B .
JOURNAL OF GENERAL PHYSIOLOGY, 2004, 124 (06) :679-690
[2]   Energetics of ion conduction through the gramicidin channel [J].
Allen, TW ;
Andersen, OS ;
Roux, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (01) :117-122
[3]   Structure of gramicidin A in a lipid bilayer environment determined using molecular dynamics simulations and solid-state NMR data [J].
Allen, TW ;
Andersen, OS ;
Roux, B .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (32) :9868-9877
[4]   Gramicidin A channel as a test ground for molecular dynamics force fields [J].
Allen, TW ;
Bastug, T ;
Kuyucak, S ;
Chung, SH .
BIOPHYSICAL JOURNAL, 2003, 84 (04) :2159-2168
[5]  
ARSENIEV AS, 1986, BIOL MEMBRANY, V3, P1077
[6]   DYNAMICS OF LIGAND-BINDING TO MYOGLOBIN [J].
AUSTIN, RH ;
BEESON, KW ;
EISENSTEIN, L ;
FRAUENFELDER, H ;
GUNSALUS, IC .
BIOCHEMISTRY, 1975, 14 (24) :5355-5373
[7]   Simulations of ion current in realistic models of ion channels:: The KcsA potassium channel [J].
Burykin, A ;
Schutz, CN ;
Villá, J ;
Warshel, A .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 47 (03) :265-280
[8]   Permeation of ions across the potassium channel: Brownian dynamics studies [J].
Chung, SH ;
Allen, TW ;
Hoyles, M ;
Kuyucak, S .
BIOPHYSICAL JOURNAL, 1999, 77 (05) :2517-2533
[9]   Modeling diverse range of potassium channels with brownian dynamics [J].
Chung, SH ;
Allen, TW ;
Kuyucak, S .
BIOPHYSICAL JOURNAL, 2002, 83 (01) :263-277
[10]   Influence of protein flexibility on the electrostatic energy landscape in gramicidin A [J].
Corry, B ;
Chung, SH .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2005, 34 (03) :208-216