Campylobacter jejuni contains two fur homologs:: Characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor

被引:130
作者
van Vliet, AHM
Baillon, MLA
Penn, CW
Ketley, JM
机构
[1] Univ Leicester, Dept Genet, Leicester LE1 7RH, Leics, England
[2] Univ Birmingham, Sch Biol Sci, Birmingham B15 2TT, W Midlands, England
基金
英国惠康基金;
关键词
D O I
10.1128/JB.181.20.6371-6376.1999
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Expression of the peroxide stress genes alkyl hydroperoxide reductase (ahpC) and catalase (katA) of the microaerophile Campylobacter jejuni is repressed by iron. Whereas iron repression in gram-negative bacteria is usually carried out by the Fur protein, previous work showed that this is not the case in C. jejuni, as these genes are still iron repressed in a C. jejuni fur mutant. An open reading frame encoding a Fur homolog (designated PerR for "peroxide stress regulator") was identified in the genome sequence of C. jejuni. The perR gene was disrupted by a kanamycin resistance cassette in C. jejuni wild-type and fur mutant strains. Subsequent characterization of the C. jejuni perR mutants showed derepressed expression of both AhpC and KatA at a much higher level than that obtained by iron limitation, suggesting that expression of these genes is controlled by other regulatory factors in addition to the iron level. Other iron-regulated proteins were not affected by the perR mutation. The fur perR double mutant showed derepressed expression of known iron-repressed genes. Further phenotypic analysis of the perR mutant, fur mutant, and the fur perR double mutant showed that the perR mutation made C. jejuni hyperresistant to peroxide stress caused by hydrogen peroxide and cumene hydroperoxide, a finding consistent with the high levels of KatA and AhpC expression, and showed that these enzymes were functional. Quantitative analysis of KatA expression showed that both the perR mutation and the fur mutation had profound effects on catalase activity, suggesting additional non-iron-dependent regulation of KatA and, by inference, AhpC. The PerR protein is a functional but nonhomologous substitution for the OxyR protein, which regulates peroxide stress genes in other gram-negative bacteria. Regulation of peroxide stress genes by a Fur homolog has recently been described for the gram-positive bacterium Bacillus subtilis. C. jejuni is the first gram-negative bacterium where non-OxyR regulation of peroxide stress genes has been described and characterized.
引用
收藏
页码:6371 / 6376
页数:6
相关论文
共 32 条
[1]   MOLECULAR CHARACTERIZATION OF THE SOXRS GENES OF ESCHERICHIA-COLI - 2 GENES CONTROL A SUPEROXIDE STRESS REGULON [J].
AMABILECUEVAS, CF ;
DEMPLE, B .
NUCLEIC ACIDS RESEARCH, 1991, 19 (16) :4479-4484
[2]  
Ausubel F.M., 1992, SHORT PROTOCOLS MOL, V2nd
[3]   An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni [J].
Baillon, MLA ;
van Vliet, AHM ;
Ketley, JM ;
Constantinidou, C ;
Penn, CW .
JOURNAL OF BACTERIOLOGY, 1999, 181 (16) :4798-4804
[4]  
BEERS RF, 1952, J BIOL CHEM, V195, P133
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes [J].
Bsat, N ;
Chen, L ;
Helmann, JD .
JOURNAL OF BACTERIOLOGY, 1996, 178 (22) :6579-6586
[7]   Bacillus subtilis contains multiple Fur homologues:: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors [J].
Bsat, N ;
Herbig, A ;
Casillas-Martinez, L ;
Setlow, P ;
Helmann, JD .
MOLECULAR MICROBIOLOGY, 1998, 29 (01) :189-198
[8]   CLONING AND TRANSCRIPTION REGULATION OF THE FERRIC UPTAKE REGULATORY GENE OF CAMPYLOBACTER-JEJUNI TGH9011 [J].
CHAN, VL ;
LOUIE, H ;
BIGHAM, HL .
GENE, 1995, 164 (01) :25-31
[9]   COORDINATE REGULATION OF BACILLUS-SUBTILIS PEROXIDE STRESS GENES BY HYDROGEN-PEROXIDE AND METAL-IONS [J].
CHEN, L ;
KERAMATI, L ;
HELMANN, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (18) :8190-8194
[10]   OXYR, A POSITIVE REGULATOR OF HYDROGEN PEROXIDE-INDUCIBLE GENES IN ESCHERICHIA-COLI AND SALMONELLA-TYPHIMURIUM, IS HOMOLOGOUS TO A FAMILY OF BACTERIAL REGULATORY PROTEINS [J].
CHRISTMAN, MF ;
STORZ, G ;
AMES, BN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (10) :3484-3488