Agonist-induced, G protein-dependent and -independent down-regulation of the μ opioid receptor -: The receptor is a direct substrate for protein-tyrosine kinase

被引:56
作者
Pak, Y
O'Dowd, BF
Wang, JB
George, SR
机构
[1] Univ Toronto, Dept Pharmacol, Toronto, ON M5S 1A8, Canada
[2] Univ Toronto, Dept Med, Toronto, ON M5S 1A8, Canada
[3] Ctr Addict & Mental Hlth, Toronto, ON M5S 1A8, Canada
[4] Univ Maryland, Sch Pharm, Dept Pharmaceut Sci, Baltimore, MD 21201 USA
关键词
D O I
10.1074/jbc.274.39.27610
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mu opioid receptor (MOR) has been shown to desensitize after 1 h of exposure to the opioid peptide, [D-Ala(2), N-MePhe(4), Gly-ol(5)]enkephalin (DAMGO), largely by the loss of receptors from the cell surface and receptor down-regulation. We have previously shown that the Thr(394) in the carboxyl tail is essential for agonist-induced early desensitization, presumably by serving as a primary phosphorylation site for G protein-coupled receptor kinase. Using a T394A mutant receptor, we determined that Thr(394) was also responsible for mu opioid receptor down-regulation. The T394A mutant receptor displayed 50% reduction of receptor down-regulation (14.8%) compared with wild type receptor (34%) upon 1 h of exposure to DAMGO, Agonist-induced T394A receptor down-regulation was unaffected by pertussis toxin treatment, indicating involvement of a mechanism independent of G protein function. Interestingly, pertussis toxin-insensitive T394A receptor down-regulation was completely inhibited by a tyrosine kinase inhibitor, genistein. Tyrosine kinase inhibition blocked wild type MOR down-regulation by 50%, and the genistein-resistant wild type MOR down-regulation was completely pertussis toxin-sensitive, Following DAMGO stimulation, MOR was shown to be phosphorylated at tyrosine residue(s), indicating that the receptor was a direct substrate for tyrosine kinase action. Mutagenesis of the four intracellular tyrosine residues resulted in complete inhibition of the G protein-insensitive MOR internalization. Therefore, agonist-induced MOR down-regulation appears to be mediated by two distinct cellular signal transduction pathways. One is G protein-dependent and GRK-dependent, which can be abolished by pertussis toxin treatment of wild type MOR or by mutagenesis of Thr(394). The other novel pathway is G protein-independent but tyrosine kinase-dependent, blocked by genistein treatment, and one in which Thr(394) has no regulatory role but phosphorylation of tyrosine residues appears essential.
引用
收藏
页码:27610 / 27616
页数:7
相关论文
共 43 条
[1]  
ALF MS, 1997, J BIOL CHEM, V272, P23382
[2]  
ALLEN JM, 1989, MOL PHARMACOL, V36, P248
[3]   The beta-adrenergic receptor is a substrate for the insulin receptor tyrosine kinase [J].
Baltensperger, K ;
Karoor, V ;
Paul, H ;
Ruoho, A ;
Czech, MP ;
Malbon, CC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (02) :1061-1064
[4]  
BARAK LS, 1994, J BIOL CHEM, V269, P2790
[5]   THE CONSERVED 7-TRANSMEMBRANE SEQUENCE NP(X)(2,3)Y OF THE G-PROTEIN-COUPLED RECEPTOR SUPERFAMILY REGULATES MULTIPLE PROPERTIES OF THE BETA(2)-ADRENERGIC RECEPTOR [J].
BARAK, LS ;
MENARD, L ;
FERGUSON, SSG ;
COLAPIETRO, AM ;
CARON, MG .
BIOCHEMISTRY, 1995, 34 (47) :15407-15414
[6]  
BENYA RV, 1993, J BIOL CHEM, V268, P20285
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]  
CHEN Y, 1994, J BIOL CHEM, V269, P7839
[9]  
Cvejic S, 1996, J BIOL CHEM, V271, P4073
[10]   Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization [J].
Ferguson, SSG ;
Downey, WE ;
Colapietro, AM ;
Barak, LS ;
Menard, L ;
Caron, MG .
SCIENCE, 1996, 271 (5247) :363-366