Hamiltonian perspective on generalized complex structure

被引:26
作者
Zabzine, M [1 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
关键词
D O I
10.1007/s00220-005-1512-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this note we clarify the relation between extended world-sheet super-symmetry and generalized complex structure. The analysis is based on the phase space description of a wide class of sigma models. We point out the natural isomorphism between the group of orthogonal automorphisms of the Courant bracket and the group of local canonical transformations of the cotangent bundle of the loop space. Indeed this fact explains the natural relation between the world-sheet and the geometry of T circle plus T*. We discuss D-branes in this perspective.
引用
收藏
页码:711 / 722
页数:12
相关论文
共 15 条
[1]  
Alekseev A, 2005, J HIGH ENERGY PHYS
[2]   Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model [J].
Cattaneo, AS ;
Felder, G .
LETTERS IN MATHEMATICAL PHYSICS, 2004, 69 (1) :157-175
[3]   A path integral approach to the Kontsevich quantization formula [J].
Cattaneo, AS ;
Felder, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 212 (03) :591-611
[4]  
Gualtieri M., 2004, THESIS OXFORD U
[5]   Generalized Calabi-Yau manifolds [J].
Hitchin, N .
QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 :281-308
[6]   Actions for (2,1) sigma models and strings [J].
Hull, CM .
NUCLEAR PHYSICS B, 1998, 509 (1-2) :252-272
[7]   Topological strings on noncommutative manifolds [J].
Kapustin, A .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2004, 1 (1-2) :49-81
[8]   Vertex algebras, mirror symmetry, and D-branes: The case of complex tori [J].
Kapustin, A ;
Orlov, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 233 (01) :79-136
[9]  
KAPUSTIN A, 2004, TOPOLOGICAL SIGMA MO
[10]   Generalized complex manifolds and supersymmetry [J].
Lindström, U ;
Minasian, R ;
Tomasiello, A ;
Zabzine, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 257 (01) :235-256