In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area

被引:327
作者
Nauhaus, K
Boetius, A
Krüger, M
Widdel, F [1 ]
机构
[1] Max Planck Inst Marine Mikrobiol, D-28359 Bremen, Germany
[2] Alfred Wegener Inst Polar & Marine Res, D-27515 Bremerhaven, Germany
[3] Int Jacobs Univ Bremen, D-28759 Bremen, Germany
关键词
D O I
10.1046/j.1462-2920.2002.00299.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Anaerobic oxidation of methane (AOM) and sulphate reduction were examined in sediment samples from a marine gas hydrate area (Hydrate Ridge, NE Pacific). The sediment contained high numbers of microbial consortia consisting of organisms that affiliate with methanogenic archaea and with sulphate-reducing bacteria. Sediment samples incubated under strictly anoxic conditions in defined mineral medium (salinity as in seawater) produced sulphide from sulphate if methane was added as the sole organic substrate. No sulphide production occurred in control experiments without methane. Methane-dependent sulphide production was fastest between 4degreesC and 16degreesC, the average rate with 0.1 MPa (approximately 1 atm) methane being 2.5 mumol sulphide day(-) (1) and (g dry mass sediment)(-) (1) . An increase of the methane pressure to 1.1 MPa (approximately 11 atm) resulted in a four to fivefold increase of the sulphide production rate. Quantitative measurements using a special anoxic incubation device without gas phase revealed continuous consumption of dissolved methane (from initially 3.2 to 0.7 mM) with simultaneous production of sulphide at a molar ratio of nearly 1:1. To test the response of the indigenous community to possible intermediates of AOM, molecular hydrogen, formate, acetate or methanol were added in the absence of methane; however, sulphide production from sulphate with any of these compounds was much slower than with methane. In the presence of methane, such additions neither stimulated nor inhibited sulphate reduction. Hence, the experiments did not provide evidence for one of these compounds acting as a free extracellular intermediate (intercellular shuttle) during AOM by the presently investigated consortia.
引用
收藏
页码:296 / 305
页数:10
相关论文
共 56 条
[1]   ANAEROBIC OXIDATION OF SATURATED-HYDROCARBONS TO CO2 BY A NEW TYPE OF SULFATE-REDUCING BACTERIUM [J].
AECKERSBERG, F ;
BAK, F ;
WIDDEL, F .
ARCHIVES OF MICROBIOLOGY, 1991, 156 (01) :5-14
[2]   INHIBITION EXPERIMENTS ON ANAEROBIC METHANE OXIDATION [J].
ALPERIN, MJ ;
REEBURGH, WS .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1985, 50 (04) :940-945
[3]  
Appia-Ayme C, 1999, APPL ENVIRON MICROB, V65, P4781
[4]  
BARNES RO, 1976, GEOLOGY, V4, P297, DOI 10.1130/0091-7613(1976)4<297:MPACIA>2.0.CO
[5]  
2
[6]   A marine microbial consortium apparently mediating anaerobic oxidation of methane [J].
Boetius, A ;
Ravenschlag, K ;
Schubert, CJ ;
Rickert, D ;
Widdel, F ;
Gieseke, A ;
Amann, R ;
Jorgensen, BB ;
Witte, U ;
Pfannkuche, O .
NATURE, 2000, 407 (6804) :623-626
[7]  
Bowman J, 2000, PROKARYOTES EVOLVING
[8]  
Breznak John A., 1994, P137
[9]   Inhibition of membrane-bound electron transport of the methanogenic archaeon Methanosarcina mazei Go1 by diphenyleneiodonium [J].
Brodersen, J ;
Bäumer, S ;
Abken, HJ ;
Gottschalk, G ;
Deppenmeier, U .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1999, 259 (1-2) :218-224
[10]   LITHOAUTOTROPHIC GROWTH OF SULFATE-REDUCING BACTERIA, AND DESCRIPTION OF DESULFOBACTERIUM-AUTOTROPHICUM GEN-NOV, SP-NOV [J].
BRYSCH, K ;
SCHNEIDER, C ;
FUCHS, G ;
WIDDEL, F .
ARCHIVES OF MICROBIOLOGY, 1987, 148 (04) :264-274