A PERCOLATION FORMULA

被引:106
作者
Schramm, Oded [1 ]
机构
[1] Microsoft Res, One Microsoft Way, Redmond, WA 98074 USA
来源
ELECTRONIC COMMUNICATIONS IN PROBABILITY | 2001年 / 6卷
关键词
D O I
10.1214/ECP.v6-1041
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let A be an arc on the boundary of the unit disk U. We prove an asymptotic formula for the probability that there is a percolation cluster K for critical site percolation on the triangular grid in U which intersects A and such that 0 is surrounded by K boolean OR A.
引用
收藏
页码:115 / 120
页数:6
相关论文
共 12 条
[1]  
[Anonymous], 1982, PERCOLATION THEORY M
[2]  
CARDY J, ARXIVMATHPH0103018
[3]   CRITICAL PERCOLATION IN FINITE GEOMETRIES [J].
CARDY, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (04) :L201-L206
[4]  
Erdelyi A., 1953, Higher Transcendental Functions, California Institute of Technology. Bateman Manuscript Project, V1
[5]  
Grimmett G., 1989, Percolation
[6]   CONFORMAL-INVARIANCE IN 2-DIMENSIONAL PERCOLATION [J].
LANGLANDS, R ;
POULIOT, P ;
SAINTAUBIN, Y .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 30 (01) :1-61
[7]  
Lawler Gregory F., ACTA MATH IN PRESS
[8]  
Rohde Steffen, ARXIVMATHPR0106036
[9]   Scaling limits of loop-erased random walks and uniform spanning trees [J].
Schramm, O .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 118 (1) :221-288
[10]  
SMIRNOV S, UNPUB