Tomographic analysis of sign-altering functions by maximum entropy method

被引:1
作者
Balandin, AL [1 ]
机构
[1] Univ Tokyo, Dept Elect Engn, High Temp Plasma Ctr, Bunkyo Ku, Tokyo 1138656, Japan
关键词
tomography; maximum entropy method; ill-posed problems;
D O I
10.1016/S0898-1221(00)00083-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalization of the maximum entropy method (MEM) for the reconstruction of sign-altering functions from two-dimensional tomographic measurement data is developed. Three-dimen-sional algorithms for parallel beam geometry are considered. Results of numerical simulations for composite model are presented. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:15 / 24
页数:10
相关论文
共 19 条
[1]   MAXIMUM-ENTROPY REGULARIZATION OF FREDHOLM INTEGRAL-EQUATIONS OF THE 1ST KIND [J].
AMATO, U ;
HUGHES, W .
INVERSE PROBLEMS, 1991, 7 (06) :793-808
[2]  
BALANDIN A, 1991, PREPRINT SERIES U TO, V979, P1
[3]  
BAZARAA MS, 1979, NONLINER PROGRAMMING
[4]   CONVERGENCE OF BEST ENTROPY ESTIMATES [J].
Borwein, J. M. ;
Lewis, A. S. .
SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (02) :191-205
[5]   EXTENDING THE POWER OF POWDER DIFFRACTION FOR STRUCTURE DETERMINATION [J].
DAVID, WIF .
NATURE, 1990, 346 (6286) :731-734
[6]   MAXIMUM-ENTROPY REGULARIZATION FOR FREDHOLM INTEGRAL-EQUATIONS OF THE 1ST KIND [J].
EGGERMONT, PPB .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (06) :1557-1576
[8]  
FRIEDEN BR, 1975, PICTURE PROCESSING D, P179
[9]   Maximum entropy and Bayesian statistics in crystallography: A review of practical applications [J].
Gilmore, CJ .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1996, 52 :561-589
[10]   IMAGE-RECONSTRUCTION FROM INCOMPLETE AND NOISY DATA [J].
GULL, SF ;
DANIELL, GJ .
NATURE, 1978, 272 (5655) :686-690