Type-specific inositol 1,4,5-trisphosphate receptor localization in the vomeronasal organ and its interaction with a transient receptor potential channel, TRPC2

被引:26
作者
Brann, JH
Dennis, JC
Morrison, EE
Fadool, DA
机构
[1] Florida State Univ, Dept Biol Sci, Program Neurosci, Biomed Res Facil, Tallahassee, FL 32306 USA
[2] Florida State Univ, Dept Biol Sci, Program Mol Biophys, Biomed Res Facil, Tallahassee, FL 32306 USA
[3] Auburn Univ, Coll Vet Med, Dept Anat Physiol & Pharmacol, Auburn, AL 36849 USA
关键词
calcium signaling; inositol 1,4,5-trisphosphate (IP3); olfaction; protein-protein interaction; vomeronasal; vomeronasal organ (VNO);
D O I
10.1046/j.1471-4159.2002.01266.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The vomeronasal organ (VNO) is the receptor portion of the accessory olfactory system and transduces chemical cues that identify social hierarchy, reproductive status, conspecifics and prey. Signal transduction in VNO neurons is apparently accomplished via an inositol 1,4,5-trisphosphate (IP3)-activated calcium conductance that includes a different set of G proteins than those identified in vertebrate olfactory sensory neurons. We used immunohistochemical (IHC) and SDS-PAGE/western analysis to localize three IP3 receptors (IP3R) in the rat VNO epithelium. Type-I IP3R expression was weak or absent. Antisera for type-II and -III IP3R recognized appropriate molecular weight proteins by SDS-PAGE, and labeled protein could be abolished by pre-adsorption of the respective antibody with antigenic peptide. In tissue sections, type-II IP3R immunoreactivity was present in the supporting cell zone but not in the sensory cell zone. Type-III IP3R immunoreactivity was present throughout the sensory zone and overlapped that of transient receptor potential channel 2 (TRPC2) in the microvillar layer of sensory epithelium. Co-immunoprecipitation of type-III IP3R and TRPC2 from VNO lysates confirmed the overlapping immunoreactivity patterns. The protein-protein interaction complex between type-III IP3R and TRPC2 could initiate calcium signaling leading to electrical signal production in VNO neurons.
引用
收藏
页码:1452 / 1460
页数:9
相关论文
共 72 条
[1]  
Berghard A, 1996, J NEUROSCI, V16, P909
[2]   Calcium - a life and death signal [J].
Berridge, MJ ;
Bootman, MD ;
Lipp, P .
NATURE, 1998, 395 (6703) :645-648
[3]   BELL-SHAPED CALCIUM-RESPONSE CURVES OF INS(1,4,5)P3-GATED AND CALCIUM-GATED CHANNELS FROM ENDOPLASMIC-RETICULUM OF CEREBELLUM [J].
BEZPROZVANNY, I ;
WATRAS, J ;
EHRLICH, BE .
NATURE, 1991, 351 (6329) :751-754
[4]  
BEZPROZVANNY I, 1998, J MEMBRANE BIOL, V145, P205
[5]   On the molecular basis and regulation of cellular capacitative calcium entry: Roles for Trp proteins [J].
Birnbaumer, L ;
Zhu, X ;
Jiang, MS ;
Boulay, G ;
Peyton, M ;
Vannier, B ;
Brown, D ;
Platano, D ;
Sadeghi, H ;
Stefani, E ;
Birnbaumer, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (26) :15195-15202
[6]   Modulation of Ca2+ entry by polypeptides of the inositol 1,4,5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP):: Evidence for roles of TRP and IP3R in store depletion-activated Ca2+ entry [J].
Boulay, G ;
Brown, DM ;
Qin, N ;
Jiang, MS ;
Dietrich, A ;
Zhu, MX ;
Chen, ZG ;
Birnbaumer, M ;
Mikoshiba, K ;
Birnbaumer, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (26) :14955-14960
[7]   Erythropoietin modulates calcium influx through TRPC2 [J].
Chu, X ;
Cheung, JY ;
Barber, DL ;
Birnbaumer, L ;
Rothblum, LI ;
Conrad, K ;
Abrasonis, V ;
Chan, YM ;
Stahl, R ;
Carey, DJ ;
Miller, BA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (37) :34375-34382
[8]   Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction [J].
Clapp, Tod R. ;
Stone, Leslie M. ;
Margolskee, Robert F. ;
Kinnamon, Sue C. .
BMC NEUROSCIENCE, 2001, 2 (1)
[9]   NEURONAL INOSITOL 1,4,5-TRISPHOSPHATE RECEPTOR LOCALIZED TO THE PLASMA-MEMBRANE OF OLFACTORY CILIA [J].
CUNNINGHAM, AM ;
RYUGO, DK ;
SHARP, AH ;
REED, RR ;
SNYDER, SH ;
RONNETT, GV .
NEUROSCIENCE, 1993, 57 (02) :339-352
[10]   A NOVEL FAMILY OF GENES ENCODING PUTATIVE PHEROMONE RECEPTORS IN MAMMALS [J].
DULAC, C ;
AXEL, R .
CELL, 1995, 83 (02) :195-206