Neural network model for proton-proton collision at high energy

被引:16
作者
El-Bakry, MY
El-Metwally, KA
机构
[1] Sultan Qaboos Univ, Dept Elect Engn, Muscat 123, Oman
[2] Salalah Coll Educ, Salalah, Oman
关键词
Artificial intelligence - Computer simulation - Neural networks - Protons;
D O I
10.1016/S0960-0779(02)00318-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Developments in artificial intelligence (AI) techniques and their applications to physics have made it feasible to develop and implement new modeling techniques for high-energy interactions. In particular, AI techniques of artificial neural networks (ANN) have recently been used to design and implement more effective models. The primary purpose of this paper is to model the proton-proton (p-p) collision using the ANN technique. Following a review of the conventional techniques and an introduction to the neural network, the paper presents simulation test results using an p-p based ANN model trained with experimental data. The p-p based ANN model calculates the multiplicity distribution of charged particles and the inelastic cross section of the p-p collision at high energies. The results amply demonstrate the feasibility of such new technique in extracting the collision features and prove its effectiveness. (C) 2002 Published by Elsevier Science Ltd.
引用
收藏
页码:279 / 285
页数:7
相关论文
共 18 条
[1]   SCALING VIOLATIONS IN MULTIPLICITY DISTRIBUTIONS AT 200-GEV AND 900-GEV [J].
ALNER, GJ ;
ANSORGE, RE ;
ASMAN, B ;
BOCKMANN, K ;
BOOTH, CN ;
BUROW, L ;
CARLSON, P ;
DECLERCQ, C ;
DEWOLF, RS ;
ECKART, B ;
EKSPONG, G ;
EVANGELOU, I ;
EYRING, A ;
FABRE, JP ;
FROBEL, L ;
FUGLESANG, C ;
GAUDAEN, J ;
GEICHGIMBEL, C ;
VONHOLTEY, G ;
HOSPES, R ;
JONAND, K ;
KOKOTT, T ;
LOTSE, F ;
MANTHOS, N ;
MEINKE, R ;
MUNDAY, DJ ;
OVENS, JEV ;
PELZER, W ;
REIDY, J ;
RUSHBROOKE, JG ;
SCHMICKLER, H ;
TRIANTIS, F ;
VANHAMME, L ;
WALCK, C ;
WARD, CP ;
WARD, DR ;
WEBBER, CJS ;
WHITE, TO ;
WILQUET, G ;
YAMDAGNI, N .
PHYSICS LETTERS B, 1986, 167 (04) :476-480
[2]  
ANDREEV IV, 1977, SOV PHYS USP, P20
[3]  
[Anonymous], PHYS REV LETT
[4]  
BHAT P, 1990, P 1990 SUMM STUD HEP
[5]   CROSS-SECTIONS AND CHARGED-PARTICLE MULTIPLICITIES AT 102 AND 405 GEV-C [J].
BROMBERG, C ;
CHANEY, D ;
COHEN, D ;
FERBEL, T ;
SLATTERY, P ;
UNDERWOOD, D ;
CHAPMAN, JW ;
COOPER, JW ;
GREEN, N ;
ROE, BP ;
SEIDL, AA ;
VELDE, JCV .
PHYSICAL REVIEW LETTERS, 1973, 31 (26) :1563-1566
[6]   PP INTERACTIONS AT 303 GEV-C - MULTIPLICITY AND TOTAL CROSS-SECTION [J].
DAO, FT ;
SLATER, W ;
GORDON, D ;
MEYER, T ;
LACH, J ;
MALAMUD, E ;
POSTER, R .
PHYSICAL REVIEW LETTERS, 1972, 29 (24) :1627-&
[7]  
Feynman R., 1972, PHOTON HADRON INTERA
[8]  
FLAMINIO V, 1979, 7903 CERN HERA
[9]   TRAINING FEEDFORWARD NETWORKS WITH THE MARQUARDT ALGORITHM [J].
HAGAN, MT ;
MENHAJ, MB .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (06) :989-993
[10]  
HAGEDORN R, 1965, NUOVO CIMENTO, V3, P147