Protein folding and maturation in a cell-free system

被引:11
作者
Hebert, DN [1 ]
Zhang, JX
Helenius, A
机构
[1] Univ Massachusetts, Dept Biochem & Mol Biol, Amherst, MA 01003 USA
[2] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA
[3] ETH Zentrum, Swiss Fed Inst Technol, Dept Biochem, CH-8092 Zurich, Switzerland
来源
BIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELLULAIRE | 1998年 / 76卷 / 05期
关键词
protein folding; endoplasmic reticulum; molecular chaperone;
D O I
10.1139/bcb-76-5-867
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reduced cellular systems have provided important tools to study complex cellular processes. Here we describe the oxidation, oligomerization, and chaperone binding of the viral glycoprotein influenza hemagglutinin in a cell-free system. The cell-free system, comprised of rough endoplasmic reticulum derived microsomes and a reticulocyte lysate, supported the complete maturation of hemagglutinin from the earliest oxidative intermediate to the mature homo-oligomer. Hemagglutinin disulfide bond formation and oligomerization were found to occur in a time- and temperature-dependent manner. Hemagglutinin's temporal association with the molecular chaperones calnexin and calreticulin was similar to that observed for their association with elongating ribosome-attached nascent chains in live cells. Furthermore, a procedure is described that permits the translocation of protein into microsomes that are depleted of lumenal contents. This cell-free system, therefore, provided an effective means to study the biological maturation processes of a protein that traverses the secretory pathway.
引用
收藏
页码:867 / 873
页数:7
相关论文
共 34 条
[1]   PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS [J].
ANFINSEN, CB .
SCIENCE, 1973, 181 (4096) :223-230
[2]   CALNEXIN - A MEMBRANE-BOUND CHAPERONE OF THE ENDOPLASMIC-RETICULUM [J].
BERGERON, JJM ;
BRENNER, MB ;
THOMAS, DY ;
WILLIAMS, DB .
TRENDS IN BIOCHEMICAL SCIENCES, 1994, 19 (03) :124-128
[3]   TRANSFER OF PROTEINS ACROSS MEMBRANES .2. RECONSTITUTION OF FUNCTIONAL ROUGH MICROSOMES FROM HETEROLOGOUS COMPONENTS [J].
BLOBEL, G ;
DOBBERSTEIN, B .
JOURNAL OF CELL BIOLOGY, 1975, 67 (03) :852-862
[4]   POSTTRANSLATIONAL ASSOCIATION OF IMMUNOGLOBULIN HEAVY-CHAIN BINDING-PROTEIN WITH NASCENT HEAVY-CHAINS IN NONSECRETING AND SECRETING HYBRIDOMAS [J].
BOLE, DG ;
HENDERSHOT, LM ;
KEARNEY, JF .
JOURNAL OF CELL BIOLOGY, 1986, 102 (05) :1558-1566
[5]   FOLDING OF INFLUENZA HEMAGGLUTININ IN THE ENDOPLASMIC-RETICULUM [J].
BRAAKMAN, I ;
HOOVERLITTY, H ;
WAGNER, KR ;
HELENIUS, A .
JOURNAL OF CELL BIOLOGY, 1991, 114 (03) :401-411
[6]   DEFECTIVE CO-TRANSLATIONAL FORMATION OF DISULFIDE BONDS IN PROTEIN DISULFIDE-ISOMERASE-DEFICIENT MICROSOMES [J].
BULLEID, NJ ;
FREEDMAN, RB .
NATURE, 1988, 335 (6191) :649-651
[7]   COTRANSLATIONAL FOLDING AND CALNEXIN BINDING DURING GLYCOPROTEIN-SYNTHESIS [J].
CHEN, W ;
HELENIUS, J ;
BRAAKMAN, I ;
HELENIUS, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6229-6233
[8]   ASSEMBLY OF INFLUENZA HEMAGGLUTININ TRIMERS AND ITS ROLE IN INTRACELLULAR-TRANSPORT [J].
COPELAND, CS ;
DOMS, RW ;
BOLZAU, EM ;
WEBSTER, RG ;
HELENIUS, A .
JOURNAL OF CELL BIOLOGY, 1986, 103 (04) :1179-1191
[9]   FOLDING, TRIMERIZATION, AND TRANSPORT ARE SEQUENTIAL EVENTS IN THE BIOGENESIS OF INFLUENZA-VIRUS HEMAGGLUTININ [J].
COPELAND, CS ;
ZIMMER, KP ;
WAGNER, KR ;
HEALEY, GA ;
MELLMAN, I ;
HELENIUS, A .
CELL, 1988, 53 (02) :197-209
[10]   PROTEIN TRANSLOCATION INTO PROTEOLIPOSOMES RECONSTITUTED FROM PURIFIED COMPONENTS OF THE ENDOPLASMIC-RETICULUM MEMBRANE [J].
GORLICH, D ;
RAPOPORT, TA .
CELL, 1993, 75 (04) :615-630