Electrical characterization of self-assembled single- and double-stranded DNA monolayers using conductive AFM

被引:59
作者
Cohen, H
Nogues, C
Ullien, D
Daube, S
Naaman, R
Porath, D [1 ]
机构
[1] Hebrew Univ Jerusalem, Dept Phys Chem, IL-91904 Jerusalem, Israel
[2] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
来源
FARADAY DISCUSSIONS | 2006年 / 131卷
关键词
D O I
10.1039/b507706k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We recently reported electrical transport measurements through double-stranded (ds)DNA molecules that are embedded in a self-assembled monolayer of single-stranded (ss)DNA and attached to a metal substrate and to a gold nanoparticle (GNP) on opposite ends. The measured current flowing through the dsDNA amounts to 220 nA at 2 V. In the present report we compare electrical transport through an ssDNA monolayer and dsDNA monolayers with and without upper thiol end-groups. The measurements are done with a conductive atomic force microscope (AFM) using various techniques. We find that the ssDNA monolayer is unable to transport current. The dsDNA monolayer without thiols in the upper end can transport low current on rare occasions and the dsDNA monolayer with thiols on both ends can transport significant current but with a much lower reliability and reproducibility than the GNP-connected dsDNA. These results reconfirm the ability of dsDNA to transport electrical current under the appropriate conditions, demonstrate the efficiency of an ssDNA monolayer as an insulating layer, and emphasize the crucial role of an efficient charge injection through covalent bonding for electrical transport in single dsDNA molecules.
引用
收藏
页码:367 / 376
页数:10
相关论文
共 24 条
[1]   DNA-templated assembly and electrode attachment of a conducting silver wire [J].
Braun, E ;
Eichen, Y ;
Sivan, U ;
Ben-Yoseph, G .
NATURE, 1998, 391 (6669) :775-778
[2]   Force-distance curves by atomic force microscopy [J].
Cappella, B ;
Dietler, G .
SURFACE SCIENCE REPORTS, 1999, 34 (1-3) :1-+
[3]   Direct measurement of electrical transport through single DNA molecules of complex sequence [J].
Cohen, H ;
Nogues, C ;
Naaman, R ;
Porath, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (33) :11589-11593
[4]   DNA monolayer on gold substrates characterized by nanoparticle labeling and scanning force microscopy [J].
Csáki, A ;
Möller, R ;
Straube, W ;
Köhler, JM ;
Fritzsche, W .
NUCLEIC ACIDS RESEARCH, 2001, 29 (16) :art. no.-e81
[5]   Making electrical contacts to molecular monolayers [J].
Cui, XD ;
Zarate, X ;
Tomfohr, J ;
Sankey, OF ;
Primak, A ;
Moore, AL ;
Moore, TA ;
Gust, D ;
Harris, G ;
Lindsay, SM .
NANOTECHNOLOGY, 2002, 13 (01) :5-14
[6]   Reproducible measurement of single-molecule conductivity [J].
Cui, XD ;
Primak, A ;
Zarate, X ;
Tomfohr, J ;
Sankey, OF ;
Moore, AL ;
Moore, TA ;
Gust, D ;
Harris, G ;
Lindsay, SM .
SCIENCE, 2001, 294 (5542) :571-574
[7]   Absence of dc-conductivity in λ-DNA [J].
de Pablo, PJ ;
Moreno-Herrero, F ;
Colchero, J ;
Gomez-Herrero, J ;
Herrero, P ;
Baró, AM ;
Ordejón, P ;
Soler, JM ;
Artacho, E .
PHYSICAL REVIEW LETTERS, 2000, 85 (23) :4992-4995
[8]  
Dekker C, 2001, PHYS WORLD, V14, P29
[9]  
DIVENTRA M, 2003, DNA ELECT ENCY NANOS, P475
[10]   Colloquium:: The quest for high-conductance DNA [J].
Endres, RG ;
Cox, DL ;
Singh, RRP .
REVIEWS OF MODERN PHYSICS, 2004, 76 (01) :195-214