On the discrete Friedrichs inequality for nonconforming finite elements

被引:14
作者
Dolejsí, V [1 ]
Feistauer, M [1 ]
Felcman, J [1 ]
机构
[1] Charles Univ, Fac Math & Phys, Prague 11800 1, Czech Republic
关键词
nonconforming finite elements; Navier-Stokes equations; Friedrichs inequality; regularity of a solution of the Poisson equation in a nonconvex domain;
D O I
10.1080/01630569908816904
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish the validity of the discrete Friedrichs inequality for piecewise linear Crouzeix-Raviart nonconforming finite elements in polygonal domains. It represents an extension of an important result proven for a polygonal convex domain to a general polygonal nonconvex domain. This result has applications in the analysis of exterior approximations of partial differential equations as, e.g., the Navier - Stokes equations and convection-diffusion problems.
引用
收藏
页码:437 / 447
页数:11
相关论文
共 21 条
[1]  
[Anonymous], 1998, APPL MATH, DOI DOI 10.1023/A:1023217905340
[2]  
[Anonymous], 1996, CONVECTION DIFFUSION
[3]  
Ciarlet P. G., 1979, FINITE ELEMENT METHO
[4]  
CROUZEIX M, R3 RAIRO, P33
[5]  
DOLEJSI V, 1998, THESIS CHARLES U PRA
[6]  
FEISTAUER M, 1987, NUMER MATH, V50, P655, DOI 10.1007/BF01398378
[7]   ON THE FINITE-ELEMENT APPROXIMATION OF FUNCTIONS WITH NONINTEGER DERIVATIVES [J].
FEISTAUER, M .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1989, 10 (1-2) :91-110
[8]  
FEISTAUER M, 1999, ERROR ESTIMATES COMB
[9]  
FEISTAUER M, 1993, MATH METHODS FLUID D
[10]  
FRIEDRICHS K, 1928, MATH ANN, V98