Nucleosome binding by the bromodomain and PHD finger of the transcriptional cofactor p300

被引:103
作者
Ragvin, A
Valvatne, H
Erdal, S
Årkskog, V
Tufteland, KR
Breen, K
Oyan, AM
Eberharter, A
Gibson, TJ
Becker, PB
Aasland, R
机构
[1] Univ Bergen, Dept Mol Biol, HIB, N-5020 Bergen, Norway
[2] Univ Munich, Adolf Butenandt Inst Mol Biol, D-80366 Munich, Germany
[3] EMBL, D-69117 Heidelberg, Germany
关键词
chromatin; PHD finger; bromodomain; histone tails; acetylation;
D O I
10.1016/j.jmb.2004.01.051
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The PHD finger and the bromodomain are small protein domains that occur in many proteins associated with phenomena related to chromatin. The bromodomain has been shown to bind acetylated lysine residues on histone tails. Lysine acetylation is one of several histone modifications that have been proposed to form the basis for a mechanism for recording epigenetically stable marks in chromatin, known as the histone code. The bromodomain is therefore thought to read a part of the histone code. Since PHD fingers often occur in proteins next to bromodomains, we have tested the hypothesis that the PHD finger can also interact with nucleosomes. Using two different in vitro assays, we found that the bromodomain/PHD finger region of the transcriptional cofactor p300 can bind to nucleosomes that have a high degree of histone acetylation. In a nucleosome retention assay, both domains were required for binding. Replacement of the p300 PHD finger with other PHD fingers resulted in loss of nucleosome binding. In an electrophoretic mobility shift assay, each domain alone showed, however, nucleosome-binding activity. The binding of the isolated PHD finger to nucleosomes was independent of the histone acetylation levels. Our data are consistent with a model where the two domains cooperate in nucleosome binding. In this model, both the bromodomain and the PHD finger contact the nucleosome while simultaneously interacting with each other. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:773 / 788
页数:16
相关论文
共 55 条
[1]   An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains [J].
Aaltonen, J ;
Bjorses, P ;
Perheentupa, J ;
HorelliKuitunen, N ;
Palotie, A ;
Peltonen, L ;
Lee, YS ;
Francis, F ;
Hennig, S ;
Thiel, C ;
Lehrach, H ;
Yaspo, ML .
NATURE GENETICS, 1997, 17 (04) :399-403
[2]   THE PHD FINGER - IMPLICATIONS FOR CHROMATIN-MEDIATED TRANSCRIPTIONAL REGULATION [J].
AASLAND, R ;
GIBSON, TJ ;
STEWART, AF .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (02) :56-59
[3]  
Adamson AL, 1996, GENETICS, V144, P621
[4]   The histone H4 acetyltransferase MOF uses a C2HC zinc finger for substrate recognition [J].
Akhtar, A ;
Becker, PB .
EMBO REPORTS, 2001, 2 (02) :113-118
[5]   A FAMILY OF TRANSCRIPTIONAL ADAPTER PROTEINS TARGETED BY THE E1A ONCOPROTEIN [J].
ARANY, Z ;
NEWSOME, D ;
OLDREAD, E ;
LIVINGSTON, DM ;
ECKNER, R .
NATURE, 1995, 374 (6517) :81-84
[6]   Scores of RINGs but No PHDs in Ubiquitin Signaling [J].
Aravind, L. ;
Iyer, L. M. ;
Koonin, E. V. .
CELL CYCLE, 2003, 2 (02) :123-126
[7]   Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain [J].
Bannister, AJ ;
Zegerman, P ;
Partridge, JF ;
Miska, EA ;
Thomas, JO ;
Allshire, RC ;
Kouzarides, T .
NATURE, 2001, 410 (6824) :120-124
[8]   Functional analysis of the p300 acetyltransferase domain:: the PHD finger of p300 but not of CBP is dispensable for enzymatic activity [J].
Bordoli, L ;
Hüsser, S ;
Lüthi, U ;
Netsch, M ;
Osmani, H ;
Eckner, R .
NUCLEIC ACIDS RESEARCH, 2001, 29 (21) :4462-4471
[9]   Solution structure of the PHD domain from the KAP-1 corepressor: structural determinants for PHD, RING and LIM zinc-binding domains [J].
Capili, AD ;
Schultz, DC ;
Rauscher, FJ ;
Borden, KLB .
EMBO JOURNAL, 2001, 20 (1-2) :165-177
[10]   Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites [J].
Czermin, B ;
Melfi, R ;
McCabe, D ;
Seitz, V ;
Imhof, A ;
Pirrotta, V .
CELL, 2002, 111 (02) :185-196