Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation

被引:2941
作者
Dimmeler, S
Fleming, I
Fisslthaler, B
Hermann, C
Busse, R
Zeiher, AM
机构
[1] Univ Frankfurt, Dept Internal Med 4, D-60590 Frankfurt, Germany
[2] Univ Frankfurt, Inst Cardiovasc Physiol, D-60590 Frankfurt, Germany
关键词
D O I
10.1038/21224
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nitric oxide (NO) produced by the endothelial NO synthase (eNOS) is a fundamental determinant of cardiovascular homesotasis: it regulates systemic blood pressure, vascular remodelling and angiogenesis(1-3). Physiologically, the most important stimulus for the continuous formation of NO is the viscous drag (shear stress) generated by the streaming blood on the endothelial layer(4-8). Although shear-stress-mediated phosphorylation of eNOS is thought to regulate enzyme activity(9,10), the mechanism of activation of eNOS is not yet known. Here we demonstrate that the serine/threonine protein kinase Akt/PKB (11-13) mediates the activation of eNOS, leading to increased NO production. Inhibition of the phosphatidylinositol-3-OH kinase/Akt pathway or mutation of the Akt site on eNOS protein (at serine 1177) attenuates the serine phosphorylation and prevents the activation of eNOS, Mimicking the phosphorylation of Ser1177 directly enhances enzyme activity and alters the sensitivity of the enzyme to Ca2+, rendering its activity maximal at sub-physiological concentrations of Ca2+. Thus, phosphorylation of eNOS by Akt represents a novel Ca2+-independent regulatory mechanism for activation of eNOS.
引用
收藏
页码:601 / 605
页数:5
相关论文
共 29 条
  • [1] Mechanism of activation of protein kinase B by insulin and IGF-1
    Alessi, DR
    Andjelkovic, M
    Caudwell, B
    Cron, P
    Morrice, N
    Cohen, P
    Hemmings, BA
    [J]. EMBO JOURNAL, 1996, 15 (23) : 6541 - 6551
  • [2] Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells
    Ayajiki, K
    Kindermann, M
    Hecker, M
    Fleming, I
    Busse, R
    [J]. CIRCULATION RESEARCH, 1996, 78 (05) : 750 - 758
  • [3] CLONED AND EXPRESSED NITRIC-OXIDE SYNTHASE STRUCTURALLY RESEMBLES CYTOCHROME-P-450 REDUCTASE
    BREDT, DS
    HWANG, PM
    GLATT, CE
    LOWENSTEIN, C
    REED, RR
    SNYDER, SH
    [J]. NATURE, 1991, 351 (6329) : 714 - 718
  • [4] PROTEIN-KINASE-B (C-AKT) IN PHOSPHATIDYLINOSITOL-3-OH INASE SIGNAL-TRANSDUCTION
    BURGERING, BMT
    COFFER, PJ
    [J]. NATURE, 1995, 376 (6541) : 599 - 602
  • [5] CALCIUM-DEPENDENT NITRIC-OXIDE SYNTHESIS IN ENDOTHELIAL CYTOSOL IS MEDIATED BY CALMODULIN
    BUSSE, R
    MULSCH, A
    [J]. FEBS LETTERS, 1990, 265 (1-2) : 133 - 136
  • [6] Pulsatile stretch and shear stress: Physical stimuli determining the production of endothelium-derived relaxing factors
    Busse, R
    Fleming, I
    [J]. JOURNAL OF VASCULAR RESEARCH, 1998, 35 (02) : 73 - 84
  • [7] COPPER JA, 1983, METHOD ENZYMOL, V99, P387
  • [8] Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress
    Corson, MA
    James, NL
    Latta, SE
    Nerem, RM
    Berk, BC
    Harrison, DG
    [J]. CIRCULATION RESEARCH, 1996, 79 (05) : 984 - 991
  • [9] FLOW-MEDIATED ENDOTHELIAL MECHANOTRANSDUCTION
    DAVIES, PF
    [J]. PHYSIOLOGICAL REVIEWS, 1995, 75 (03) : 519 - 560
  • [10] Suppression of apoptosis by nitric oxide via inhibition of interleukin-1 beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases
    Dimmeler, S
    Haendeler, J
    Nehls, M
    Zeiher, AM
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 1997, 185 (04) : 601 - 607