Analysis of multivariate longitudinal data using quasi-least squares

被引:31
作者
Chaganty, NR [1 ]
Naik, DN [1 ]
机构
[1] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
关键词
longitudinal data; Kronecker product; quasi-least squares; GEE; AR(1); SUR model;
D O I
10.1016/S0378-3758(01)00235-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider the analysis of multivariate longitudinal data assuming a scale multiple of Kronecker product correlation structure for the covariance matrix of the observations on each subject. The method used for the estimation of the parameters is the quasi-least squares method developed in the following three papers: Chaganty (J. Statist. Plann. Inference 63 (1997) 39), Shults and Chaganty (Biometrics 54 (1998) 1622) and Chaganty and Shults (J. Statist. Plann. Inference 76 (1999) 145). We show that the estimating equations for the correlation parameters in the quasi-least-squares method are optimal unbiased estimating equations if the data is from a normal population. An algorithm for computing the estimates is provided and implemented on a real life data set. The asymptotic joint distribution of the estimators of the regression and correlation parameters is derived and used for testing a linear hypothesis on the regression parameters. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:421 / 436
页数:16
相关论文
共 20 条
[1]   SCHEFFE MIXED MODEL FOR MULTIVARIATE REPEATED MEASURES - A RELATIVE EFFICIENCY EVALUATION [J].
BOIK, RJ .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1991, 20 (04) :1233-1255
[2]   An alternative approach to the analysis of longitudinal data via generalized estimating equations [J].
Chaganty, NR .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 63 (01) :39-54
[3]   On eliminating the asymptotic bias in the quasi-least squares estimate of the correlation parameter [J].
Chaganty, NR ;
Shults, J .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 76 (1-2) :145-161
[4]  
CROWDER M, 1995, BIOMETRIKA, V82, P407
[5]   GENERAL-CLASS OF COVARIANCE-STRUCTURES FOR 2 OR MORE REPEATED FACTORS IN LONGITUDINAL DATA-ANALYSIS [J].
GALECKI, AT .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1994, 23 (11) :3105-3119
[6]  
GODAMBE VP, 1960, ANN MATH STAT, V31, P12
[7]   WALDS TEST AS APPLIED TO HYPOTHESES IN LOGIT ANALYSIS [J].
HAUCK, WW ;
DONNER, A .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1977, 72 (360) :851-853
[8]  
Heyde C. C., 1997, QUASILIKELIHOOD ITS
[9]   LONGITUDINAL DATA-ANALYSIS USING GENERALIZED LINEAR-MODELS [J].
LIANG, KY ;
ZEGER, SL .
BIOMETRIKA, 1986, 73 (01) :13-22
[10]  
MOOLGAVKAR SH, 1986, MODERN STAT METHODS, P104