Multi-basin dynamics of a protein in a crystal environment

被引:73
作者
Garcia, AE
Blumenfeld, R
Hummer, G
Krumhansl, JA
机构
[1] LOS ALAMOS NATL LAB, DIV THEORET, LOS ALAMOS, NM 87545 USA
[2] LOS ALAMOS NATL LAB, CTR NONLINEAR STUDIES, LOS ALAMOS, NM 87545 USA
[3] CAMBRIDGE HYDRODYNAM, PRINCETON, NJ USA
[4] CORNELL UNIV, DEPT PHYS, ATOM & SOLID STATE PHYS LAB, ITHACA, NY 14854 USA
基金
美国能源部;
关键词
protein dynamics; nonlinear dynamics; ultrametric hierarchy; molecular dynamics; anomalous diffusion; Levy flights;
D O I
10.1016/S0167-2789(97)00090-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dynamics of the small protein crambin is studied in the crystal environment by means of a 5.1 nanoseconds molecular dynamics (MD) simulation. The resulting trajectory is analyzed in terms of a small set of nonlinear dynamical modes that best describe the molecule's fluctuations. These modes are nonlinear in the sense that they describe a trajectory exhibiting multiple transitions among local minima at various timescales. Nonlinear modes are responsible for most of the protein atomic fluctuations. An ultrametric hierarchy of sampled local minima describes the protein trajectory when structures are classified in terms of their interconfigurational mean squared distance. Transitions among minima involve small changes in the relative atomic positions of many atoms in the protein. The character of the MD trajectory fits within the framework of rugged energy landscape dynamics. This MD simulation clarifies the unique statistical features of the barriers between minima in the energy-like configurational landscape. Longer timescale dynamics seem to sample transitions between minima separated by relatively higher barriers. The MD trajectory of the system in configurational space can be described in terms of diffusion of a particle in real space with a waiting time distribution due to partial trapping in shallow minima. A description of the dynamics in terms of an open Newtonian system (the protein) coupled to a stochastic system (the solvent and fast quasiharmonic modes of the protein) reveals that the system loses memory of its configurational space within a few picoseconds. The diffusion of the protein in configurational space is anomalous in the sense that the mean square displacement increases sublinearly with time, i.e., as a power law with an exponent that is smaller than unity.
引用
收藏
页码:225 / 239
页数:15
相关论文
共 58 条
[1]   ESSENTIAL DYNAMICS OF PROTEINS [J].
AMADEI, A ;
LINSSEN, ABM ;
BERENDSEN, HJC .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (04) :412-425
[2]   PROTEIN STATES AND PROTEIN QUAKES [J].
ANSARI, A ;
BERENDZEN, J ;
BOWNE, SF ;
FRAUENFELDER, H ;
IBEN, IET ;
SAUKE, TB ;
SHYAMSUNDER, E ;
YOUNG, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (15) :5000-5004
[3]   DYNAMICS OF LIGAND-BINDING TO MYOGLOBIN [J].
AUSTIN, RH ;
BEESON, KW ;
EISENSTEIN, L ;
FRAUENFELDER, H ;
GUNSALUS, IC .
BIOCHEMISTRY, 1975, 14 (24) :5355-5373
[4]  
AUSTIN RH, 1993, 1992 LECT COMPL SYST, P353
[5]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[6]   COLLECTIVE NMR RELAXATION MODEL APPLIED TO PROTEIN DYNAMICS [J].
BRUSCHWEILER, R ;
CASE, DA .
PHYSICAL REVIEW LETTERS, 1994, 72 (06) :940-943
[7]   FUNNELS, PATHWAYS, AND THE ENERGY LANDSCAPE OF PROTEIN-FOLDING - A SYNTHESIS [J].
BRYNGELSON, JD ;
ONUCHIC, JN ;
SOCCI, ND ;
WOLYNES, PG .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1995, 21 (03) :167-195
[8]   CROSS-VALIDATION TESTS OF TIME-AVERAGED MOLECULAR-DYNAMICS REFINEMENTS FOR DETERMINATION OF PROTEIN STRUCTURES BY X-RAY CRYSTALLOGRAPHY [J].
CLARAGE, JB ;
PHILLIPS, GN .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :24-36
[9]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[10]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092