共 42 条
Reconstruction of de novo pathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose in Saccharomyces cerevisiae
被引:73
作者:
Oka, Takuji
[1
]
Jigami, Yoshifumi
[1
]
机构:
[1] Natl Inst Adv Ind Sci & Technol, Res Ctr Glycosci, Tsukuba, Ibaraki 3058566, Japan
关键词:
Saccharomyces cerevisiae;
UDP-glucuronic acid;
UDP-glucuronic acid decarboxylase;
UDP-glucose dehydrogenase;
UDP-xylose;
D O I:
10.1111/j.1742-4658.2006.05281.x
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
UDP-D-glucuronic acid and UDP-D-xylose are required for the biosynthesis of glycosaminoglycan in mammals and of cell wall polysaccharides in plants. Given the importance of these glycans to some organisms, the development of a system for production of UDP-D-glucuronic acid and UDP-D xylose from a common precursor could prove useful for a number of applications. The budding yeast Saccharomyces cerevisiae lacks an endogenous ability to synthesize or consume UDP-D-glucuronic acid and UDP-D xylose. However, yeast have a large cytoplasmic pool of UDP-D-glucose that could be used to synthesize cell wall beta-glucan, as a precursor of UDP-D-glucuronic acid and UDP-D-xylose. Thus, if a mechanism for converting the precursors into the end-products can be identifed, yeast may be harnessed as a system for production of glycans. Here we report a novel S. cerevisiae strain that coexpresses the Arabidopsis thaliana genes UGD1 and UXS3, which encode a UDP-glucose dehydrogenase (AtUGD1) and a UDP-glucuronic acid decarboxylase (AtUXS3), respectively, which are required for the conversion of UDP-D-glucose to UDP-D-xylose in plants. The recombinant yeast strain was capable of converting UDP-D-glucose to UDP-D-glucuronic acid, and UDP-D-glucuronic acid to UDP-D-xylose, in the cytoplasm, demonstrating the usefulness of this yeast system for the synthesis of glycans. Furthermore, we observed that overexpression of AtUGD1 caused a reduction in the UDP-D-glucose pool, whereas coexpression of AtUXS3 and AtUGD1 did not result in reduction of the UDP-D-glucose pool. Enzymatic analysis of the purifed hexamer His-AtUGD1 revealed that AtUGD1 activity is strongly inhibited by UDP-D-xylose, suggesting that AtUGD1 maintains intracellular levels of UDP-D-glucose in cooperation with AtUXS3 via the inhibition of AtUGD1 by UDP-D-xylose.
引用
收藏
页码:2645 / 2657
页数:13
相关论文