Human PIR1 of the protein-tyrosine phosphatase superfamily has RNA 5′-triphosphatase and diphosphatase activities

被引:62
作者
Deshpande, T
Takagi, T
Hao, LN
Buratowski, S
Charbonneau, H
机构
[1] Purdue Univ, Dept Biochem, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA
[3] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
D O I
10.1074/jbc.274.23.16590
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A human cDNA was isolated encoding a protein with significant sequence similarity (41% identity) to the BVP RNA 5'-phosphatase from the Autographa californica nuclear polyhedrosis virus. This protein is a member of the protein-tyrosine phosphatase (PTP) superfamily and is identical to PIR1, shown by Yuan et al. (Yuan, Y., Da-Ming, L., and Sun, H. (1998) J. Biol. Chem. 272, 20347-20353) to be a nuclear protein that can associate with RNA or ribonucleoprotein complexes, We demonstrate that PIR1 removes two phosphates from the 5'-triphosphate end of RNA, but not from mononucleotide triphosphates, The specific activity of PIR1 with RNA is several orders of magnitude greater than that with the best protein substrates examined, suggesting that RNA is its physiological substrate. A 120-amino acid segment C-terminal to the PTP domain is not required for RNA phosphatase activity. We propose that PIR1 and its closest homologs, which include the metazoan mRNA capping enzymes, constitute a subgroup of the PTP family that use RNA as a substrate.
引用
收藏
页码:16590 / 16594
页数:5
相关论文
共 39 条
[1]   5' TERMINAL STRUCTURE OF METHYLATED MESSENGER-RNA SYNTHESIZED INVITRO BY VESICULAR STOMATITIS-VIRUS [J].
ABRAHAM, G ;
RHODES, DP ;
BANERJEE, AK .
CELL, 1975, 5 (01) :51-58
[2]   The structure and mechanism of protein phosphatases: Insights into catalysis and regulation [J].
Barford, D ;
Das, AK ;
Egloff, MP .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1998, 27 :133-164
[3]   Viral and cellular enzymes involved in synthesis of mRNA cap structure [J].
Bisaillon, M ;
Lemay, G .
VIROLOGY, 1997, 236 (01) :1-7
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   A CATALYTIC MECHANISM FOR THE DUAL-SPECIFIC PHOSPHATASES [J].
DENU, JM ;
DIXON, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (13) :5910-5914
[6]   2 BINDING ORIENTATIONS FOR PEPTIDES TO THE SRC SH3 DOMAIN - DEVELOPMENT OF A GENERAL-MODEL FOR SH3-LIGAND INTERACTIONS [J].
FENG, SB ;
CHEN, JK ;
YU, HT ;
SIMON, JA ;
SCHREIBER, SL .
SCIENCE, 1994, 266 (5188) :1241-1247
[7]   Modification of a PCR-based site-directed mutagenesis method [J].
Fisher, CL ;
Pei, GK .
BIOTECHNIQUES, 1997, 23 (04) :570-&
[8]   Characterization of a baculovirus-encoded RNA 5′-triphosphatase [J].
Gross, CH ;
Shuman, S .
JOURNAL OF VIROLOGY, 1998, 72 (09) :7057-7063
[9]   RNA 5′-triphosphatase, nucleoside triphosphatase, and guanylyltransferase activities of baculovirus LEF-4 protein [J].
Gross, CH ;
Shuman, S .
JOURNAL OF VIROLOGY, 1998, 72 (12) :10020-10028
[10]  
GUAN KL, 1991, J BIOL CHEM, V266, P17026